使用Python在Jupyter Notebook中构建基于机器学习算法的个性化饮食推荐系统

165 篇文章 97 订阅 ¥49.90 ¥99.00
本文介绍如何在Jupyter Notebook中利用Python构建基于机器学习的饮食推荐系统,特别是使用K近邻算法(KNN)根据食物营养成分预测口味,包括数据收集与预处理、模型构建、评估优化及部署。
摘要由CSDN通过智能技术生成
1. 引言

随着人们对健康饮食的日益关注,个性化饮食推荐系统正成为一种趋势。这样的系统能根据用户的饮食习惯、健康目标和口味偏好,为用户提供个性化的饮食建议。本文将教您如何在Jupyter Notebook中使用Python构建一个简单的饮食推荐系统。我们会使用一种机器学习算法,无需深入数学细节,通过代码实现来让您明白其工作原理。


2. 数据收集与预处理

首先,我们需要收集一些关于食品的数据,包括其营养价值、口味等信息。为了简化,我们可以假设已经有了一个CSV文件,其内容如下:

食品名,卡路里,蛋白质,脂肪,碳水化合物,口味
鸡肉,165,31,3.6,0,咸
牛奶,103,8,2.4,12,甜
香蕉,105,1.3,0.4,27,甜
三文鱼,206,22,13,0,咸

我们需要导入必要的Python库,并加载数据:

import pandas as pd

# 加载数据
data 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快撑死的鱼

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值