这个其实做的挺顺的,用个next数组搞定,小数据上正确了,大数据不知道怎么搞的,第一次提交时貌似没过。
感觉应该不是超时的问题。
题目背景
汉东省政法大学附属中学所在的光明区最近实施了名为“智慧光明”的智慧城市项目。具体到交通领域,通过“智慧光明”终端,可以看到光明区所有红绿灯此时此刻的状态。小明的学校也安装了“智慧光明”终端,小明想利用这个终端给出的信息,估算自己放学回到家的时间。
问题描述
一次放学的时候,小明已经规划好了自己回家的路线,并且能够预测经过各个路段的时间。同时,小明通过学校里安装的“智慧光明”终端,看到了出发时刻路上经过的所有红绿灯的指示状态。请帮忙计算小明此次回家所需要的时间。
输入格式
输入的第一行包含空格分隔的三个正整数 r、y、g,表示红绿灯的设置。这三个数均不超过 106。
输入的第二行包含一个正整数 n,表示小明总共经过的道路段数和路过的红绿灯数目。
接下来的 n 行,每行包含空格分隔的两个整数 k、t。k=0 表示经过了一段道路,将会耗时 t 秒,此处 t 不超过 106;k=1、2、3 时,分别表示出发时刻,此处的红绿灯状态是红灯、黄灯、绿灯,且倒计时显示牌上显示的数字是 t,此处 t 分别不会超过 r、y、g。输出格式
输出一个数字,表示此次小明放学回家所用的时间。
样例输入
30 3 30
8
0 10
1 5
0 11
2 2
0 6
0 3
3 10
0 3
样例输出
46
样例说明
小明先经过第一段路,用时 10 秒。第一盏红绿灯出发时是红灯,还剩 5 秒;小明到达路口时,这个红绿灯已经变为绿灯,不用等待直接通过。接下来经过第二段路,用时 11 秒。第二盏红绿灯出发时是黄灯,还剩两秒;小明到达路口时,这个红绿灯已经变为红灯,还剩 11 秒。接下来经过第三、第四段路,用时 9 秒。第三盏红绿灯出发时是绿灯,还剩 10 秒;小明到达路口时,这个红绿灯已经变为红灯,还剩两秒。接下来经过最后一段路,用时 3 秒。共计 10+11+11+9+2+3 = 46 秒。
评测用例规模与约定
有些测试点具有特殊的性质:
* 前 2 个测试点中不存在任何信号灯。
测试点的输入数据规模:
* 前 6 个测试点保证 n ≤ 10^3。
* 所有测试点保证 n ≤ 10^5。
试了几次都百思不得其解。
然后再一次读题,发现了一个惊天大秘密:all可能超int范围: 10^5 *10^2=10^7,(诶不对啊,int的最大值不是2*10^9吗。。。)
3.16日更新:
不过现在明白了,这是一个特殊情况:
如果前面全部没有信号灯,则all一直累积,最大可以达到:(r+y+g)*10^5,也就是接近3*10^11,这明显超了int范围。不过有一种方法可以避免不用longlong,那就是每一次all的累积都mod(r+y+g)。这样就行了(我不是每一次mod,而是计算的时候才mod,所以不能避免这种情况,因此用long long)
反正不管三七二十一,改成long long 就过了。。。付出了空间的代价,不过影响不大。顺便我还把程序优化了一下,每一次计算的时候吧all mod一下r+y+g,这样快几倍。
附上c++代码:
//小明放学
//20.08-20.45
#include<iostream>
using namespace std;
long long num[100005][2];
int next[4]={0,3,1,2};//next数组记录下一个状态 .绿->黄->红: 3g->2y->1r->3g
int time[4]={0}; //time数组记录时间
int n;
long long all=0;//到目前为止所用的时间
int main()
{
int r,y,g;
cin>>r>>y>>g;//
time[1]=r;
time[2]=y;
time[3]=g;
cin>>n;
for(int i=0;i<n;i++)//k=1、2、3 时,分别表示出发时刻,此处的红绿灯状态是红灯、黄灯、绿灯,
{
cin>>num[i][0];
cin>>num[i][1];
}
for(int i=0;i<n;i++)//绿->黄->红: 3g->2y->1r->3g
{
if(num[i][0]!=0)//有信号灯
{
num[i][1]-=(all%(r+y+g));
while(num[i][1]<0)
{
num[i][0]=next[num[i][0]];//状态转换
num[i][1]=time[num[i][0]]+num[i][1];//时间转换
}
}
//下面的同小明上学
if(num[i][0]!=3)
{
all+=num[i][1];
}
if(num[i][0]==2)
{
all+=r;
}
}
cout<<all;
return 0;
}