环境搭建
1.darknet下载
官网:GitHub - pjreddie/darknet: Convolutional Neural Networks
2.安装环境vs2019
Visual Studio 产品系列文档 | Microsoft Learn
3.cuda+cudnn
CUDA安装教程(超详细)_Billie使劲学的博客-CSDN博客
4.opencv安装
切记最好是将这些加载到环境变量中 ,如果加完不行可能要重启电脑重新激活环境变量
开始配置和安装
1.用文本文档打开darknet.vcxproj文件修改cuda版本号,yolo_cpp_dll,yolo_console_dll.同样如此有两处需要修改(win10 下darknet+yolo(gpu版本)安装配置 | 码农家园)(【全网最全最完整】windows下darknet安装搭建与模型训练方法【亲测有效】_SHU_RYE的博客-CSDN博客)
2.若遇到BuildCustomizations\CUDA下没有CUDA
错误 MSB4019 未找到导入的项目“C:\Program Files (x86)\MSBuild\Microsoft.Cpp\v4.0\V140\BuildCustomizations\CUDA 9.2.targets
vs2019中自定义生成依赖项 没有CUDA10.1_vs生成依赖项没有cuda_a7_aaaaa的博客-CSDN博客
错误 C1083 无法打开包括文件: “cudnn.h
则表示没有安好Cudnn或者cudnn没有放到CUDA目录下不在环境变量中
(https://developer.nvidia.com/rdp/cudnn-download)
LINK : fatal error LNK1104: 无法打开文件“opencv_world400d.lib”---VS2017+OpenCV配置过程
则是opencv环境变量的问题
3.Could not locate zlibwapi.dll. Please make sure it is in your library path
Could not locate zlibwapi.dll. Please make sure it is in your library path_Chaos_Happy的博客-CSDN博客
都没问题的话就通过以下来测试以下效果,权重文件可以在AB的guithub下到或者链接:https://pan.baidu.com/s/1leFA14UQQVStEBKlFnRzVw 提取码:u7k1
YOLOv4 darknet windows10版本训练自己的数据教程_BOOK肆意~的博客-CSDN博客
darknet.exe detector test data/coco.data cfg/yolov4.cfg backup/yolov4.weights
数据集准备
就是将VOC数据集格式转成YOLO的数据集格式,其中VOC数据集和COCO数据集的搭建参考
制作COCO格式数据集_coco格式数据集制作流程_小何要努力613的博客-CSDN博客
VOC数据集是前三个目录
Imageset中的Main文件为:
# coding=utf-8
import os
import random
xmlfilepath = r'E:/majordata/mymajor/xiaz/gpr/try/VOC/hyperboloid/Annotations/' # xml文件的路径
saveBasePath = r'E:/majordata/mymajor/xiaz/gpr/try/VOC/hyperboloid/ImageSets/' # 生成的txt文件的保存路径
trainval_percent = 0.9 # 训练验证集占整个数据集的比重(划分训练集和测试验证集)
train_percent = 0.8 # 训练集占整个训练验证集的比重(划分训练集和验证集)
total_xml = os.listdir(xmlfilepath)
num = len(total_xml)
list = range(num)
tv = int(num * trainval_percent)
tr = int(tv * train_percent)
trainval = random.sample(list, tv)
train = random.sample(trainval, tr)
print("train and val size", tv)
print("traub suze", tr)
ftrainval = open(os.path.join(saveBasePath, 'Main/trainval.txt'), 'w')
ftest = open(os.path.join(saveBasePath, 'Main/test.txt'), 'w')
ftrain = open(os.path.join(saveBasePath, 'Main/train.txt'), 'w')
fval = open(os.path.join(saveBasePath, 'Main/val.txt'), 'w')
for i in list:
name = total_xml[i][:-4] + '\n'
if i in trainval:
ftrainval.write(name)
if i in train:
ftrain.write(name)
else:
fval.write(name)
else:
ftest.write(name)
ftrainval.close()
ftrain.close()
fval.close()
ftest.close()
yolo需要的labels文件夹生成代码为:
import xml.etree.ElementTree as ET
import pickle
import os
from os import listdir, getcwd
from os.path import join
sets=[('2007', 'train'), ('2007', 'val'), ('2007', 'train'), ('2007', 'val'), ('2007', 'test')]
classes = ["hyperboloid"]
def convert(size, box):
dw = 1./size[0]
dh = 1./size[1]
x = (box[0] + box[1])/2.0
y = (box[2] + box[3])/2.0
w = box[1] - box[0]
h = box[3] - box[2]
x = x*dw
w = w*dw
y = y*dh
h = h*dh
return (x,y,w,h)
path = os.getcwd()
def convert_annotation(year, image_id):
in_file = open(path+'/VOCdevkit/VOC%s/Annotations/%s.xml'%(year, image_id))
out_file = open(path + '/VOCdevkit/VOC%s/labels/%s.txt'%(year, image_id), 'w')
tree=ET.parse(in_file)
root = tree.getroot()
size = root.find('size')
w = int(size.find('width').text)
h = int(size.find('height').text)
for obj in root.iter('object'):
difficult = obj.find('difficult').text
cls = obj.find('name').text
if cls not in classes or int(difficult) == 1:
continue
cls_id = classes.index(cls)
xmlbox = obj.find('bndbox')
b = (float(xmlbox.find('xmin').text), float(xmlbox.find('xmax').text), float(xmlbox.find('ymin').text), float(xmlbox.find('ymax').text))
bb = convert((w,h), b)
out_file.write(str(cls_id) + " " + " ".join([str(a) for a in bb]) + '\n')
wd = getcwd()
for year, image_set in sets:
if not os.path.exists('VOCdevkit/VOC%s/labels/'%(year)):
os.makedirs(path+'/VOCdevkit/VOC%s/labels/'%(year))
image_ids = open('VOCdevkit/VOC%s/ImageSets/Main/%s.txt'%(year, image_set)).read().strip().split()
list_file = open('%s_%s.txt'%(year, image_set), 'w')
for image_id in image_ids:
list_file.write('%s/VOCdevkit/VOC%s/JPEGImages/%s.jpg\n'%(wd, year, image_id))
convert_annotation(year, image_id)
list_file.close()
建立相关文件YOLOv4 darknet windows10版本训练自己的数据教程_BOOK肆意~的博客-CSDN博客
训练和测试和摄像头实时
Windows下使用Darknet训练自己的数据集(模型:yolov4-tiny、数据集:垃圾分类)_yolov4-tiny训练自己的数据集_非非非非常时刻的博客-CSDN博客
detector表示进行目标检测
demo表示实时监测
第三个参数是.data的相对地址
第四个参数是.cfg的相对地址
第五个参数是.weights的相对地址
-c 0 表示使用摄像头0号
darknet.exe detector test data/voc.data cfg/yolov4-custom.cfg backup\yolov4-custom_best.weights
darknet.exe detector train data/voc.data cfg/yolov4-custom.cfg backup\yolov4-custom_best.weights
darknet.exe detector demo data/voc.data cfg/yolov4-custom.cfg backup\yolov4-custom_best.weights -c 0
YOLO 目标检测 识别框不显示文字标签
YOLO 目标检测 识别框不显示文字标签(已解决)_-借我杀死庸碌的情怀-的博客-CSDN博客
原因:
文件夹data/labels/
中有字母字符的图片。YOLO 使用它们在图片中绘制标签。如果没有该文件夹或者已删除该文件夹,因此 Yolo 找不到它们,所以标签在图片中变黑。darknet/data at master · pjreddie/darknet · GitHub
测试darknet 使用voc训练的模型的标签和自己的对不上
测试darknet 使用voc训练的模型的标签问题_怎么利用voc训练集的标签_DONGHUIB的博客-CSDN博客
原因:
是darknet 在使用detect 参数时,指定了 "cfg/coco.data"。需要改成自己对应的data/voc.data
另外如果想不检测哪一类可以参考这个文章