对抗攻击2——FGSM(Fast Gradient Sign Method)

本文介绍了Fast Gradient Sign Method (FGSM)的攻击策略,如何通过计算损失函数梯度并应用约束,生成能在不改变原始类别的情况下误导模型的对抗样本。它强调了这种扰动方向选择的原理,以及对抗样本对模型分类稳定性的潜在影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 FGSM被设计用于在给定的输入样本中快速找对抗扰动方向,并使得目标模型的训练损失增大,减小分类置信度,增大内类类别混淆的可能性。使训练损失增大的对抗扰动的方向并不能保证模型误分类,但是对抗扰动的梯度方向比其它的方向更有可能导致模型误分类。
 FGSM通过计算损失函数关于输入样本的的梯度,对梯度进行 s i g n \mathrm{sign} sign操作,并乘以一个约束参数 ϵ \epsilon ϵ,具体的公式如下所示: x ′ = x + ϵ ⋅ s i g n ( ∇ x L ( x , y ) ) , x^{\prime}=x+\epsilon\cdot \mathrm{sign}(\nabla_x \mathcal{L}(x,y)), x=x+ϵsign(xL(x,y)),其中 ∇ x L ( x , y ) \nabla_x \mathcal{L}(x,y) xL(x,y)是损失函数关于输入样本 x x x的一阶导数。生成的对抗样本控制在输入样本的空间中。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值