FGSM被设计用于在给定的输入样本中快速找对抗扰动方向,并使得目标模型的训练损失增大,减小分类置信度,增大内类类别混淆的可能性。使训练损失增大的对抗扰动的方向并不能保证模型误分类,但是对抗扰动的梯度方向比其它的方向更有可能导致模型误分类。
FGSM通过计算损失函数关于输入样本的的梯度,对梯度进行
s
i
g
n
\mathrm{sign}
sign操作,并乘以一个约束参数
ϵ
\epsilon
ϵ,具体的公式如下所示:
x
′
=
x
+
ϵ
⋅
s
i
g
n
(
∇
x
L
(
x
,
y
)
)
,
x^{\prime}=x+\epsilon\cdot \mathrm{sign}(\nabla_x \mathcal{L}(x,y)),
x′=x+ϵ⋅sign(∇xL(x,y)),其中
∇
x
L
(
x
,
y
)
\nabla_x \mathcal{L}(x,y)
∇xL(x,y)是损失函数关于输入样本
x
x
x的一阶导数。生成的对抗样本控制在输入样本的空间中。
对抗攻击2——FGSM(Fast Gradient Sign Method)
最新推荐文章于 2025-03-29 18:54:18 发布