卷积公式介绍

1 卷积定义

f ( x ) f(x) f(x) h ( x ) h(x) h(x)有界且可积,一维函数卷积连续形式 g ( x ) = f ( x ) ∗ h ( x ) = ∫ − ∞ + ∞ f ( ξ ) h ( x − ξ ) d ξ \begin{aligned}g(x)&=f(x)*h(x)\\ &=\int^{+\infty}_{-\infty}f(\xi)h(x-\xi)d\xi\end{aligned} g(x)=f(x)h(x)=+f(ξ)h(xξ)dξ一维函数卷积离散形式 g ( x ) = f ( x ) ∗ h ( x ) = ∑ ξ f ( ξ ) h ( x − ξ ) \begin{aligned}g(x)&=f(x)*h(x)\\ &=\sum\limits_{\xi}f(\xi)h(x-\xi)\end{aligned} g(x)=f(x)h(x)=ξf(ξ)h(xξ)二维函数卷积的连续形式表示为 g ( x , y ) = f ( x , y ) ∗ h ( x , y ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ f ( ξ , η ) h ( x − ξ , y − η ) d ξ d η \begin{aligned}g(x,y)&=f(x,y)*h(x,y)\\ &=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}f(\xi,\eta)h(x-\xi,y-\eta)d\xi d\eta\end{aligned} g(x,y)=f(x,y)h(x,y)=++f(ξ,η)h(xξ,yη)dξdη二维函数卷积的离散形式表示为 g ( x , y ) = f ( x , y ) ∗ h ( x , y ) = ∑ ξ ∑ η f ( ξ , η ) h ( x − ξ , y − η ) \begin{aligned}g(x,y)&=f(x,y)*h(x,y)\\ &=\sum\limits_{\xi}\sum\limits_{\eta}f(\xi,\eta)h(x-\xi,y-\eta)\end{aligned} g(x,y)=f(x,y)h(x,y)=ξηf(ξ,η)h(xξ,yη)则称 g ( x ) g(x) g(x)称为函数 f ( x ) f(x) f(x) h ( x ) h(x) h(x)的卷积。其中 ∗ * 表示卷积符号。 g ( x ) g(x) g(x) f ( x ) f(x) f(x) h ( x ) h(x) h(x)两个函数共同作用的结果。对于给定的 x x x,第一个函数贡献是 f ( ξ ) f(\xi) f(ξ),则第二个函数的贡献是 h ( x − ξ ) h(x-\xi) h(xξ),需要对任何可能的 ξ \xi ξ求和。

2 卷积的性质

卷积共满足如下六种性质:

  • 交换律: f ( x ) ∗ h ( x ) = h ( x ) ∗ f ( x ) f(x)*h(x)=h(x)*f(x) f(x)h(x)=h(x)f(x)
  • 分配律: [ v ( x ) + w ( x ) ] ∗ h ( x ) = v ( x ) ∗ h ( x ) + w ( x ) ∗ h ( x ) [v(x)+w(x)]*h(x)=v(x)*h(x)+w(x)*h(x) [v(x)+w(x)]h(x)=v(x)h(x)+w(x)h(x)
  • 结合律: [ v ( x ) ∗ w ( x ) ] ∗ h ( x ) = v ( x ) ∗ [ w ( x ) ∗ h ( x ) ] [v(x)*w(x)]*h(x)=v(x)*[w(x)*h(x)] [v(x)w(x)]h(x)=v(x)[w(x)h(x)]
  • 三角不等式: ∣ f ( x ) ∗ h ( x ) ∣ ≤ ∣ f ( x ) ∣ ∗ ∣ h ( x ) ∣ |f(x)*h(x)|\leq |f(x)|*|h(x)| f(x)h(x)f(x)h(x)
  • 位移不变性:若 f ( x ) ∗ h ( x ) = g ( x ) f(x)*h(x)=g(x) f(x)h(x)=g(x),则 f ( x − x 0 ) ∗ h ( x ) = g ( x − x 0 ) f(x-x_0)*h(x)=g(x-x_0) f(xx0)h(x)=g(xx0) f ( x ) ∗ h ( x − x 0 ) = g ( x − x 0 ) f(x)*h(x-x_0)=g(x-x_0) f(x)h(xx0)=g(xx0)
  • 缩放性:若 f ( x ) ∗ h ( x ) = g ( x ) f(x)*h(x)=g(x) f(x)h(x)=g(x),则 f ( x b ) ∗ h ( x b ) = ∣ b ∣ g ( x b ) f(\frac{x}{b})*h(\frac{x}{b})=|b|g(\frac{x}{b}) f(bx)h(bx)=bg(bx)

3 卷积实例

已知 f ( t ) = { 1 0 ≤ t ≤ 1 0 o t h e r w i s e g ( t ) = { e − β t t ≥ 0 0 t < 0 f(t)=\left\{\begin{array}{ll}1 & 0 \leq t \leq 1 \\ 0 & \mathrm{otherwise} \end{array} \right .\quad \quad g(t)=\left\{\begin{array}{ll}e^{-\beta t}& t \geq 0\\0& t<0\end{array}\right. f(t)={100t1otherwiseg(t)={eβt0t0t<0 f ( t ) ∗ g ( t ) f(t)*g(t) f(t)g(t)
解: g ( t − τ ) = { e − β ( t − τ ) t ≥ τ 0 t < τ g(t-\tau)=\left\{\begin{array}{ll}e^{-\beta(t-\tau)} & t \geq \tau \\ 0 & t < \tau \end{array}\right. g(tτ)={eβ(tτ)0tτt<τ
t < 0 t < 0 t<0时, f ( τ ) g ( t − τ ) f(\tau)g(t-\tau) f(τ)g(tτ) ∫ − ∞ + ∞ f ( τ ) g ( t − τ ) d τ = 0 \int_{-\infty}^{+\infty}f(\tau)g(t-\tau)d\tau=0 +f(τ)g(tτ)dτ=0
t ≥ 0 t \geq 0 t0时, f ( τ ) g ( t − τ ) = { e − β ( t − τ ) 0 ≤ τ ≤ t 0 o t h e r w i s e f(\tau)g(t-\tau)=\left\{\begin{array}{ll}e^{-\beta(t-\tau)} & 0 \leq \tau \leq t \\ 0 & \mathrm{otherwise} \end{array}\right. f(τ)g(tτ)={eβ(tτ)00τtotherwise ∫ − ∞ + ∞ f ( τ ) g ( t − τ ) d τ = ∫ 0 t f ( τ ) g ( t − τ ) d τ = ∫ 0 t e − β ( t − τ ) d τ = 1 β ( 1 − e − β t ) \int^{+\infty}_{-\infty}f(\tau)g(t-\tau)d\tau=\int_{0}^{t} f(\tau) g(t-\tau) d \tau=\int_{0}^{t} e^{-\beta(t-\tau)} d \tau=\frac{1}{\beta}\left(1-e^{-\beta t}\right) +f(τ)g(tτ)dτ=0tf(τ)g(tτ)dτ=0teβ(tτ)dτ=β1(1eβt)
t > 1 t>1 t>1时, f ( τ ) g ( t − τ ) = { e − β ( t − τ ) 0 ≤ τ ≤ 1 0 otherwise f(\tau) g(t-\tau)=\left\{\begin{array}{ll} e^{-\beta(t-\tau)} & 0 \leq \tau \leq 1 \\ 0 & \text {otherwise} \end{array}\right. f(τ)g(tτ)={eβ(tτ)00τ1otherwise ∫ − ∞ + ∞ f ( τ ) g ( t − τ ) d τ = ∫ 0 1 e − β ( t − τ ) d τ = e − 1 β e − β t \int^{+\infty}_{-\infty}f(\tau)g(t-\tau)d\tau=\int_{0}^{1}e^{-\beta(t-\tau)}d\tau=\frac{e-1}{\beta}e^{-\beta t} +f(τ)g(tτ)dτ=01eβ(tτ)dτ=βe1eβt
综上所述可知:
f ( t ) ∗ g ( t ) = { 0 t < 0 1 β ( 1 − e − β t ) 0 ≤ t ≤ 1 e − 1 β e − β t t > 1 f(t) * g(t)=\left\{\begin{array}{ll} 0 & t<0 \\ \frac{1}{\beta}\left(1-e^{-\beta t}\right) & 0 \leq t \leq 1 \\ \frac{e-1}{\beta} e^{-\beta t} & t>1 \end{array}\right. f(t)g(t)=0β1(1eβt)βe1eβtt<00t1t>1

  • 14
    点赞
  • 47
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值