设曲面方程为 Σ : F ( x , y , z ) = 0 \Sigma: F(x,y,z)=0 Σ:F(x,y,z)=0,在曲面上任取一条通过点 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0)的曲线 Γ : { x = φ ( t ) y = ψ ( t ) z = ω ( t ) , \Gamma:\left\{\begin{aligned}x&=\varphi(t)\\y&=\psi(t)\\ z&= \omega(t)\end{aligned}\right., Γ:⎩⎪⎨⎪⎧xyz=φ(t)=ψ(t)=ω(t),曲线在 M 0 M_0 M0处的切向量 T ⃗ = { x ′ ( t 0 ) , y ′ ( t 0 ) , z ′ ( t 0 ) } \vec{T}=\{x^{\prime}(t_0),y^{\prime}(t_0),z^{\prime}(t_0)\} T={x′(t0),y′(t0),z′(t0)},由于 Γ \Gamma Γ在 Σ \Sigma Σ上,故有 F ( φ ( t ) , ψ ( t ) , ω ( t ) ) = 0 F(\varphi(t),\psi(t),\omega(t))=0 F(φ(t),ψ(t),ω(t))=0,上式在 M M M处关于 t t t求导,则有 F x ( M 0 ) φ ′ ( t 0 ) + F y ( M 0 ) ψ ′ ( t 0 ) + F z ( M 0 ) ω ′ ( t 0 ) = 0 ⟹ ( F x ( M 0 ) , F y ( M 0 ) , F z ( M 0 ) ) ⋅ ( x ′ ( t 0 ) , y ′ ( t 0 ) , z ′ ( t 0 ) ) = 0 \begin{aligned}&F_x(M_0)\varphi^{\prime}(t_0)+F_y(M_0)\psi^{\prime}(t_0)+F_z(M_0)\omega^{\prime}(t_0)=0\\\Longrightarrow & \left(F_x(M_0),F_y(M_0),F_z(M_0)\right)\cdot \left(x^{\prime}(t_0),y^{\prime}(t_0),z^{\prime}(t_0)\right)=0\end{aligned} ⟹Fx(M0)φ′(t0)+Fy(M0)ψ′(t0)+Fz(M0)ω′(t0)=0(Fx(M0),Fy(M0),Fz(M0))⋅(x′(t0),y′(t0),z′(t0))=0令 n ⃗ = { F x ( x 0 , y 0 , z 0 ) , F y ( x 0 , y 0 , z 0 ) , F z ( x 0 , y 0 , z 0 ) } \vec{n}=\left\{F_x(x_0,y_0,z_0),F_y(x_0,y_0,z_0),F_z(x_0,y_0,z_0)\right\} n={Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)},曲面上在 M 0 M_0 M0的切线都与同一向量 n ⃗ \vec{n} n垂直,故曲面上通过 M 0 M_0 M0的一切曲线在点 M 0 M_0 M0的切线都在同一平面上,这个平面称为曲面在点 M 0 M_0 M0的切平面。通过点 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0)而垂直于切平面的直线称为曲线在该点的法线。法线方程为: x − x 0 F x ( x 0 , y 0 , z 0 ) = y − y 0 F y ( x 0 , y 0 , z 0 ) = z − z 0 F z ( x 0 , y 0 , z 0 ) \frac{x-x_0}{F_x(x_0,y_0,z_0)}=\frac{y-y_0}{F_y(x_0,y_0,z_0)}=\frac{z-z_0}{F_z(x_0,y_0,z_0)} Fx(x0,y0,z0)x−x0=Fy(x0,y0,z0)y−y0=Fz(x0,y0,z0)z−z0曲面在 M M M处的法向量,即为 n ⃗ = { F x ( x 0 , y 0 , z 0 ) , F y ( x 0 , y 0 , z 0 ) , F z ( x 0 , y 0 , z 0 ) } \vec{n}=\{F_x(x_0,y_0,z_0),F_y(x_0,y_0,z_0),F_z(x_0,y_0,z_0)\} n={Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)}
空间曲面方程为 z = f ( x , y ) z=f(x,y) z=f(x,y),令 F ( x , y , z ) = f ( x , y ) − z F(x,y,z)=f(x,y)-z F(x,y,z)=f(x,y)−z曲面在 M 0 M_0 M0处的切平面方程为 ( F x ( x 0 , y 0 , z 0 ) , F y ( x 0 , y 0 , z 0 ) , F z ( x 0 , y 0 , z 0 ) ) ⋅ ( x − x 0 , y − y 0 , z − z 0 ) = 0 ⟹ F x ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ( x 0 , y 0 , z 0 ) ( x 0 , y 0 ) + F z ( x 0 , y 0 , z 0 ) ( z − z 0 ) = 0 ⟹ f x ( x 0 , y 0 ) ( x − x 0 ) + f y ( x 0 , y 0 ) ( y − y 0 ) − ( z − z 0 ) = 0 ⟹ f x ( x 0 , y 0 ) ( x − x 0 ) + f y ( x 0 , y 0 ) ( y − y 0 ) = z − z 0 \begin{aligned}&(F_x(x_0,y_0,z_0),F_y(x_0,y_0,z_0),F_z(x_0,y_0,z_0))\cdot(x-x_0,y-y_0,z-z_0)=0\\ \Longrightarrow&F_x(x_0,y_0,z_0)(x-x_0)+F_y(x_0,y_0,z_0)(x_0,y_0)+F_z(x_0,y_0,z_0)(z-z_0)=0\\ \Longrightarrow &f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)-(z-z_0)=0\\ \Longrightarrow & f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)=z-z_0\end{aligned} ⟹⟹⟹(Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))⋅(x−x0,y−y0,z−z0)=0Fx(x0,y0,z0)(x−x0)+Fy(x0,y0,z0)(x0,y0)+Fz(x0,y0,z0)(z−z0)=0fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0)−(z−z0)=0fx(x0,y0)(x−x0)+fy(x0,y0)(y−y0)=z−z0曲线在 M 0 M_0 M0处的法线方程为 x − x 0 f x ( x 0 , y 0 ) = y − y 0 f y ( x 0 , y 0 ) = z − z 0 − 1 \frac{x-x_0}{f_x(x_0,y_0)}=\frac{y-y_0}{f_y(x_0,y_0)}=\frac{z-z_0}{-1} fx(x0,y0)x−x0=fy(x0,y0)y−y0=−1z−z0曲面 z = f ( x , y ) z=f(x,y) z=f(x,y)在 M 0 M_0 M0处法向量 n ⃗ = { f x ( x 0 , y 0 ) , f y ( x 0 , y 0 ) , − 1 } \vec{n}=\{f_x(x_0,y_0),f_y(x_0,y_0),-1\} n={fx(x0,y0),fy(x0,y0),−1}。