曲面的切平面与法线

本文介绍了如何确定曲面上曲线在特定点的切向量,并由此导出曲面在该点的切平面方程。通过求导得到曲面在某点的法向量,进一步给出了法线方程。对于空间曲面z=f(x,y),同样讨论了其切平面和法线的计算方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

设曲面方程为 Σ : F ( x , y , z ) = 0 \Sigma: F(x,y,z)=0 Σ:F(x,y,z)=0,在曲面上任取一条通过点 M 0 ( x 0 , y 0 , z 0 ) M_0(x_0,y_0,z_0) M0(x0,y0,z0)的曲线 Γ : { x = φ ( t ) y = ψ ( t ) z = ω ( t ) , \Gamma:\left\{\begin{aligned}x&=\varphi(t)\\y&=\psi(t)\\ z&= \omega(t)\end{aligned}\right., Γ:xyz=φ(t)=ψ(t)=ω(t),曲线在 M 0 M_0 M0处的切向量 T ⃗ = { x ′ ( t 0 ) , y ′ ( t 0 ) , z ′ ( t 0 ) } \vec{T}=\{x^{\prime}(t_0),y^{\prime}(t_0),z^{\prime}(t_0)\} T ={x(t0),y(t0),z(t0)},由于 Γ \Gamma Γ Σ \Sigma Σ上,故有 F ( φ ( t ) , ψ ( t ) , ω ( t ) ) = 0 F(\varphi(t),\psi(t),\omega(t))=0 F(φ(t),ψ(t),ω(t))=0,上式在 M M M处关于 t t t求导,则有 F x ( M 0 ) φ ′ ( t 0 ) + F y ( M 0 ) ψ ′ ( t 0 ) + F z ( M 0 ) ω ′ ( t 0 ) = 0 ⟹ ( F x ( M 0 ) , F y ( M 0 ) , F z ( M 0 ) ) ⋅ ( x ′ ( t 0 ) , y ′ ( t 0 ) , z ′ ( t 0 ) ) = 0 \begin{aligned}&F_x(M_0)\varphi^{\prime}(t_0)+F_y(M_0)\psi^{\prime}(t_0)+F_z(M_0)\omega^{\prime}(t_0)=0\\\Longrightarrow & \left(F_x(M_0),F_y(M_0),F_z(M_0)\right)\cdot \left(x^{\prime}(t_0),y^{\prime}(t_0),z^{\prime}(t_0)\right)=0\end{aligned} Fx(M0)φ(t0)+Fy(M0)ψ(t0)+Fz(M0)ω(t0)=0(Fx(M0),Fy(M0),Fz(M0))(x(t0),y(t0),z(t0))=0 n ⃗ = { F x ( x 0 , y 0 , z 0 ) , F y ( x 0 , y 0 , z 0 ) , F z ( x 0 , y 0 , z 0 ) } \vec{n}=\left\{F_x(x_0,y_0,z_0),F_y(x_0,y_0,z_0),F_z(x_0,y_0,z_0)\right\} n ={Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)},曲面上在 M 0 M_0 M0的切线都与同一向量 n ⃗ \vec{n} n 垂直,故曲面上通过 M 0 M_0 M0的一切曲线在点 M 0 M_0 M0的切线都在同一平面上,这个平面称为曲面在点 M 0 M_0 M0的切平面。通过点 M ( x 0 , y 0 , z 0 ) M(x_0,y_0,z_0) M(x0,y0,z0)而垂直于切平面的直线称为曲线在该点的法线。法线方程为: x − x 0 F x ( x 0 , y 0 , z 0 ) = y − y 0 F y ( x 0 , y 0 , z 0 ) = z − z 0 F z ( x 0 , y 0 , z 0 ) \frac{x-x_0}{F_x(x_0,y_0,z_0)}=\frac{y-y_0}{F_y(x_0,y_0,z_0)}=\frac{z-z_0}{F_z(x_0,y_0,z_0)} Fx(x0,y0,z0)xx0=Fy(x0,y0,z0)yy0=Fz(x0,y0,z0)zz0曲面在 M M M处的法向量,即为 n ⃗ = { F x ( x 0 , y 0 , z 0 ) , F y ( x 0 , y 0 , z 0 ) , F z ( x 0 , y 0 , z 0 ) } \vec{n}=\{F_x(x_0,y_0,z_0),F_y(x_0,y_0,z_0),F_z(x_0,y_0,z_0)\} n ={Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0)}

空间曲面方程为 z = f ( x , y ) z=f(x,y) z=f(x,y),令 F ( x , y , z ) = f ( x , y ) − z F(x,y,z)=f(x,y)-z F(x,y,z)=f(x,y)z曲面在 M 0 M_0 M0处的切平面方程为 ( F x ( x 0 , y 0 , z 0 ) , F y ( x 0 , y 0 , z 0 ) , F z ( x 0 , y 0 , z 0 ) ) ⋅ ( x − x 0 , y − y 0 , z − z 0 ) = 0 ⟹ F x ( x 0 , y 0 , z 0 ) ( x − x 0 ) + F y ( x 0 , y 0 , z 0 ) ( x 0 , y 0 ) + F z ( x 0 , y 0 , z 0 ) ( z − z 0 ) = 0 ⟹ f x ( x 0 , y 0 ) ( x − x 0 ) + f y ( x 0 , y 0 ) ( y − y 0 ) − ( z − z 0 ) = 0 ⟹ f x ( x 0 , y 0 ) ( x − x 0 ) + f y ( x 0 , y 0 ) ( y − y 0 ) = z − z 0 \begin{aligned}&(F_x(x_0,y_0,z_0),F_y(x_0,y_0,z_0),F_z(x_0,y_0,z_0))\cdot(x-x_0,y-y_0,z-z_0)=0\\ \Longrightarrow&F_x(x_0,y_0,z_0)(x-x_0)+F_y(x_0,y_0,z_0)(x_0,y_0)+F_z(x_0,y_0,z_0)(z-z_0)=0\\ \Longrightarrow &f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)-(z-z_0)=0\\ \Longrightarrow & f_x(x_0,y_0)(x-x_0)+f_y(x_0,y_0)(y-y_0)=z-z_0\end{aligned} (Fx(x0,y0,z0),Fy(x0,y0,z0),Fz(x0,y0,z0))(xx0,yy0,zz0)=0Fx(x0,y0,z0)(xx0)+Fy(x0,y0,z0)(x0,y0)+Fz(x0,y0,z0)(zz0)=0fx(x0,y0)(xx0)+fy(x0,y0)(yy0)(zz0)=0fx(x0,y0)(xx0)+fy(x0,y0)(yy0)=zz0曲线在 M 0 M_0 M0处的法线方程为 x − x 0 f x ( x 0 , y 0 ) = y − y 0 f y ( x 0 , y 0 ) = z − z 0 − 1 \frac{x-x_0}{f_x(x_0,y_0)}=\frac{y-y_0}{f_y(x_0,y_0)}=\frac{z-z_0}{-1} fx(x0,y0)xx0=fy(x0,y0)yy0=1zz0曲面 z = f ( x , y ) z=f(x,y) z=f(x,y) M 0 M_0 M0处法向量 n ⃗ = { f x ( x 0 , y 0 ) , f y ( x 0 , y 0 ) , − 1 } \vec{n}=\{f_x(x_0,y_0),f_y(x_0,y_0),-1\} n ={fx(x0,y0),fy(x0,y0),1}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

道2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值