一文搞定MarkDown语法

本文主要是对MarkDown常用方法的一些整理,主要包括数学公式表示、文字相关设置,其中参考了很多其他优秀博客,已放在文末参考部分。本文将持续更新。。。。。

一、数学公式

1. 行内公式和行间公式

在 Markdown 中可以直接插入 LaTeX 数学式,数学公式可分为行内公式{inline math)和行间公式 (display math) 两种形式:
行内公式:使用$公式$,将数学式插入文本行之内,使之与文本融为一体,这种形式适合编写简短的数学式。
行间公式:使用$$公式$$,将数学式插在文本行之间,自成一行或一个段落,与上下文附加一段垂 直空白,使数学式突出醒目。

2. 希腊字母

希腊字母(小写)输入希腊字母(大写)输入
α \alpha α\alphaAA
β \beta β\betaBB
γ \gamma γ\gamma Γ \Gamma Γ\Gamma
δ \delta δ\delat Δ \Delta Δ\Delta
ϵ \epsilon ϵ ε \varepsilon ε\epsilon 或 \varepsilonEE
ζ \zeta ζ\zetaZZ
η \eta η\etaHH
θ \theta θ ϑ \vartheta ϑ\theta 或 \vartheta Θ \Theta Θ\Theta
ι \iota ι\iotaII
κ \kappa κ\kappaKK
λ \lambda λ\lambda Λ \Lambda Λ\Lambda
μ \mu μ\muMM
ν \nu ν\nuNN
ξ \xi ξ\xi Ξ \Xi Ξ\Xi
ooOO
π \pi π ϖ \varpi ϖ\pi 或 \varpi Π \Pi Π\Pi
ρ \rho ρ ϱ \varrho ϱ\rhoa 或 \varrho P P PP
σ \sigma σ ς \varsigma ς\sigma 或 \varsigma Σ \Sigma Σ\Sigma
τ \tau τ\tauTT
υ \upsilon υ\upsilon Υ \Upsilon Υ\Upsilon
ϕ \phi ϕ φ \varphi φ\phi 或 \varphi Φ \Phi Φ\Phi
χ \chi χ\chi X X XX
ψ \psi ψ\psi Ψ \Psi Ψ\Psi
ω \omega ω\omega Ω \Omega Ω\Omega

Tip:
数学符号加粗:$\mathbf{123}$
希腊字母加粗:$\pmb{希腊字母}$
斜体加粗:$\boldsymbol{希腊字母}$

3. 数学运算符与简单公式

数学字符输入数学字符输入
± \pm ±\pm × \times ×\times
÷ \div ÷\div ∣ \mid \mid
∤ \nmid \nmid ⋅ \cdot \cdot
∘ \circ \circ ∗ \ast \ast
⨀ \bigodot \bigodot ⨂ \bigotimes \bigotimes
⨁ \bigoplus \bigoplus ≤ \leq \leq
≥ \geq \geq ≠ \neq =\neq
≈ \approx \approx ≡ \equiv \equiv
∑ \sum \sum ∏ \prod \prod
∑ i = 1 n \sum\limits_{i = 1}^n i=1n\sum\limits_{i = 1}^n ∑ i = 1 n \sum_{i = 1}^{n} i=1n\sum_{i = 1}^{n}
∐ \coprod \coprod ∅ \emptyset \emptyset
∈ \in \in ∉ \notin /\notin
⊂ \subset \subset ⊃ \supset \supset
⊆ \subseteq \subseteq ⊇ \supseteq \supseteq
⋂ \bigcap \bigcap ⋃ \bigcup \bigcup
⋁ \bigvee \bigvee ⋀ \bigwedge \bigwedge
⨄ \biguplus \biguplus ⨆ \bigsqcup \bigsqcup
log ⁡ \log log\log lg ⁡ \lg lg\lg
ln ⁡ \ln ln\ln ⊥ \bot \bot
∠ \angle \angle 3 0 ∘ 30^\circ 3030^\circ
sin ⁡ \sin sin\sin cos ⁡ \cos cos\cos
tan ⁡ \tan tan\tan cot ⁡ \cot cot\cot
sec ⁡ \sec sec\sec csc ⁡ \csc csc\csc
′ \prime \prime ∫ \int \int
∬ \iint \iint ∭ \iiint \iiint
∬ ∬ \iint\iint ∬∬\iint\iint ∮ \oint \oint
lim ⁡ \lim lim\lim ∞ \infty \infty
∇ \nabla \nabla ∵ \because \because
∃ \exists \exists ∀ \forall \forall
∴ \therefore \therefore ≠ \not= =\not=
≯ \not> >\not ⊄ \not\subset \not\subset
y ^ \hat{y} y^\hat{y} y ˇ \check{y} yˇ\check{y}
y ˘ \breve{y} y˘\breve{y} a + b + c ‾ \overline{a+b+c} a+b+c\overline{a+b+c}
a + b + c ‾ \underline{a+b+c} a+b+c\underline{a+b+c} a + b + c ‾ + d ⏞ \overbrace{a+\underline{b+c}+d} a+b+c+d \overbrace{a+\underline{b+c}+d}
↑ \uparrow \uparrow ↓ \downarrow \downarrow
⇑ \Uparrow \Uparrow ⇓ \Downarrow \Downarrow
→ \rightarrow \rightarrow ← \leftarrow \leftarrow
⇒ \Rightarrow \Rightarrow ⇐ \Leftarrow \Leftarrow
⟶ \longrightarrow \longrightarrow ⟵ \longleftarrow \longleftarrow
a → \overrightarrow{a} a \overrightarrow{a} a ← \overleftarrow{a} a \overleftarrow{a}
a b \sqrt{ab} ab \sqrt{ab} a b n \sqrt[n]{ab} nab \sqrt[n]{ab}
a b c d \frac{ab}{cd} cdab\frac{ab}{cd} a b c ⏟ \underbrace{abc} abc\underbrace{abc}
a ⃗ \vec{a} a \vec{a}

Tips:好多复杂公式都是通过上表基本元素的组合,例:

(1)通过$f(x,y) = \frac{\sqrt[3]{x^2 + y^3}}{3x^2 +4y^{2.5}}$表示公式 f ( x , y ) = x 2 + y 3 3 3 x 2 + 4 y 2.5 f(x,y) = \frac{\sqrt[3]{x^2 + y^3}}{3x^2 +4y^{2.5}} f(x,y)=3x2+4y2.53x2+y3
(2)通过$\prod\limits_{i = 1}^n(x_i-1)(x_i + 2)$表示累乘 ∏ i = 1 n ( x i − 1 ) ( x i + 2 ) \prod\limits_{i = 1}^n(x_i-1)(x_i + 2) i=1n(xi1)(xi+2),累加同理;
(3)通过$\int_0^1 {x^2} {\rm d}x$表示积分 ∫ 0 1 x 2 d x \int_0^1 {x^2} {\rm d}x 01x2dx
(4)通过$\lim\limits_{n \to +\infty} \frac{1}{n(n+1)}$表示极限 lim ⁡ n → + ∞ 1 n ( n + 1 ) \lim\limits_{n \to +\infty} \frac{1}{n(n+1)} n+limn(n+1)1
⋮ \vdots

4. 矩阵表示

不带括号矩阵

$$
  \begin{matrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{matrix} 
$$

效果:
1 2 3 4 5 6 7 8 9 \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} 147258369
改变矩阵字号和颜色:在数学公式首尾添加<font size = 5 color = 'green'>公式</font>这一字段。

<font size = 5 color = 'green'>$$
  \begin{matrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{matrix} 
$$</font>

效果:
1 2 3 4 5 6 7 8 9 \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} 147258369
单线矩阵(矩阵行列式表示)

$$
\begin{vmatrix}
	1&2&3\\
	4&5&6\\
	7&8&9
\end{vmatrix}
$$

∣ 1 2 3 4 5 6 7 8 9 ∣ \begin{vmatrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{vmatrix} 147258369
双线矩阵

$$
\begin{Vmatrix}
1&2&3\\
4&5&6\\
7&8&9
\end{Vmatrix}
$$

∥ 1 2 3 4 5 6 7 8 9 ∥ \begin{Vmatrix} 1&2&3\\ 4&5&6\\ 7&8&9 \end{Vmatrix} 147258369
{ } \{\} {}括号的矩阵

$$
\left\{
  \begin{matrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{matrix} 
\right\} 
$$

效果:
{ 1 2 3 4 5 6 7 8 9 } \left\{ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right\} 147258369
[ ] [] []括号的矩阵:

$$
 \left[
 \begin{matrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{matrix}
  \right] 
$$

效果:
[ 1 2 3 4 5 6 7 8 9 ] \left[ \begin{matrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{matrix} \right] 147258369
不使用left和right关键词

$$
 \begin{bmatrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{bmatrix} 
$$

[ 1 2 3 4 5 6 7 8 9 ] \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} 147258369

$$
 \begin{Bmatrix}
   1 & 2 & 3 \\
   4 & 5 & 6 \\
   7 & 8 & 9
  \end{Bmatrix} 
$$

{ 1 2 3 4 5 6 7 8 9 } \begin{Bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{Bmatrix} 147258369
带省略号的矩阵

$$
\left[
\begin{matrix}
 1      & 2      & \cdots & 4      \\
 7      & 6      & \cdots & 5      \\
 \vdots & \vdots & \ddots & \vdots \\
 8      & 9      & \cdots & 0      \\
\end{matrix}
\right]
$$

[ 1 2 ⋯ 4 7 6 ⋯ 5 ⋮ ⋮ ⋱ ⋮ 8 9 ⋯ 0 ] \left[ \begin{matrix} 1 & 2 & \cdots & 4 \\ 7 & 6 & \cdots & 5 \\ \vdots & \vdots & \ddots & \vdots \\ 8 & 9 & \cdots & 0 \\ \end{matrix} \right] 178269450

5. 方程及方程组表示

多元方程对齐

$$
\begin{cases} 
		a_{11}x_1&+&a_{12}x_2&+&\cdots&+a_{1n}x_n&=&b_1\\
		&&&&\vdots\\
		a_{n1}x_1&+&a_{n2}x_2&+&\cdots&+a_{nn}x_n&=&b_n&			
\end{cases}
$$

{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 ⋮ a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n \begin{cases} a_{11}x_1&+&a_{12}x_2&+&\cdots&+a_{1n}x_n&=&b_1\\ &&&&\vdots\\ a_{n1}x_1&+&a_{n2}x_2&+&\cdots&+a_{nn}x_n&=&b_n& \end{cases} a11x1an1x1++a12x2an2x2+++a1nxn+annxn==b1bn
条件函数

$$
P(x|Pa_x)=\begin{cases} 
		1, & x=f(Pa_{x})\\ 
		0, & other\ values 
\end{cases}
$$

P ( x ∣ P a x ) = { 1 , x = f ( P a x ) 0 , o t h e r   v a l u e s P(x|Pa_x)=\begin{cases} 1, & x=f(Pa_{x})\\ 0, & other\ values \end{cases} P(xPax)={1,0,x=f(Pax)other values

二、字体设置

1. 设置文字颜色

浅红色文字:<font color="#dd0000">浅红色文字:</font><br /> 
深红色文字:<font color="#660000">深红色文字</font><br /> 
浅绿色文字:<font color="#00dd00">浅绿色文字</font><br /> 
深绿色文字:<font color="#006600">深绿色文字</font><br /> 
浅蓝色文字:<font color="#0000dd">浅蓝色文字</font><br /> 
深蓝色文字:<font color="#000066">深蓝色文字</font><br /> 
浅黄色文字:<font color="#dddd00">浅黄色文字</font><br /> 
深黄色文字:<font color="#666600">深黄色文字</font><br /> 
浅青色文字:<font color="#00dddd">浅青色文字</font><br /> 
深青色文字:<font color="#006666">深青色文字</font><br /> 
浅紫色文字:<font color="#dd00dd">浅紫色文字</font><br /> 
深紫色文字:<font color="#660066">深紫色文字</font><br /> 

效果:
浅红色文字:浅红色文字:

深红色文字:深红色文字

浅绿色文字:浅绿色文字

深绿色文字:深绿色文字

浅蓝色文字:浅蓝色文字

深蓝色文字:深蓝色文字

浅黄色文字:浅黄色文字

深黄色文字:深黄色文字

浅青色文字:浅青色文字

深青色文字:深青色文字

浅紫色文字:浅紫色文字

深紫色文字:深紫色文字

2. 设置字体大小

size为1<font size="1">size为1</font><br /> 
size为2<font size="2">size为2</font><br /> 
size为3<font size="3">size为3</font><br /> 
size为4<font size="4">size为4</font><br /> 
size为10<font size="10">size为10</font><br /> 

效果:
size为1:size为1

size为2:size为2

size为3:size为3

size为4:size为4

size为10:size为10

3. 设置字体

<font face="黑体">我是黑体字</font>
<font face="宋体">我是宋体字</font>
<font face="微软雅黑">我是微软雅黑字</font>
<font face="fantasy">我是fantasy字</font>
<font face="Helvetica">我是Helvetica字</font>

效果:
我是黑体字
我是宋体字
我是微软雅黑字
我是fantasy字
我是Helvetica字

4. 设置背景颜色

<table><tr><td bgcolor=#FF00FF>背景色的设置是按照十六进制颜色值:#7FFFD4</td></tr></table>
<table><tr><td bgcolor=#FF83FA>背景色的设置是按照十六进制颜色值:#FF83FA</td></tr></table>
<table><tr><td bgcolor=#D1EEEE>背景色的设置是按照十六进制颜色值:#D1EEEE</td></tr></table>
<table><tr><td bgcolor=#C0FF3E>背景色的设置是按照十六进制颜色值:#C0FF3E</td></tr></table>
<table><tr><td bgcolor=#54FF9F>背景色的设置是按照十六进制颜色值:#54FF9F</td></tr></table>

效果:

背景色的设置是按照十六进制颜色值:#7FFFD4
背景色的设置是按照十六进制颜色值:#FF83FA
背景色的设置是按照十六进制颜色值:#D1EEEE
背景色的设置是按照十六进制颜色值:#C0FF3E
背景色的设置是按照十六进制颜色值:#54FF9F

三、表格

| 标题 | 标题 | 标题 |
|:-|:-:|-:|
|内容左对齐标题|内容居中对齐标题|内容右对齐标题|

效果:

标题标题标题
内容左对齐标题内容居中对齐标题内容右对齐标题

参考

[1] 使用Markdown写矩阵、表格和一些数学公式(实用
[2] 使用Markdown语法编写数学公式(详细版)
[3] markdown中希腊字母加粗
[4] markdown编辑器语法——文字颜色、大小、字体与背景色的设置
[5] 万能Markdown数学公式

后续添加更新中>>>>>>>

  • 26
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
完整版:https://download.csdn.net/download/qq_27595745/89522468 【课程大纲】 1-1 什么是java 1-2 认识java语言 1-3 java平台的体系结构 1-4 java SE环境安装和配置 2-1 java程序简介 2-2 计算机中的程序 2-3 java程序 2-4 java类库组织结构和文档 2-5 java虚拟机简介 2-6 java的垃圾回收器 2-7 java上机练习 3-1 java语言基础入门 3-2 数据的分类 3-3 标识符、关键字和常量 3-4 运算符 3-5 表达式 3-6 顺序结构和选择结构 3-7 循环语句 3-8 跳转语句 3-9 MyEclipse工具介绍 3-10 java基础知识章节练习 4-1 一维数组 4-2 数组应用 4-3 多维数组 4-4 排序算法 4-5 增强for循环 4-6 数组和排序算法章节练习 5-0 抽象和封装 5-1 面向过程的设计思想 5-2 面向对象的设计思想 5-3 抽象 5-4 封装 5-5 属性 5-6 方法的定义 5-7 this关键字 5-8 javaBean 5-9 包 package 5-10 抽象和封装章节练习 6-0 继承和多态 6-1 继承 6-2 object类 6-3 多态 6-4 访问修饰符 6-5 static修饰符 6-6 final修饰符 6-7 abstract修饰符 6-8 接口 6-9 继承和多态 章节练习 7-1 面向对象的分析与设计简介 7-2 对象模型建立 7-3 类之间的关系 7-4 软件的可维护与复用设计原则 7-5 面向对象的设计与分析 章节练习 8-1 内部类与包装器 8-2 对象包装器 8-3 装箱和拆箱 8-4 练习题 9-1 常用类介绍 9-2 StringBuffer和String Builder类 9-3 Rintime类的使用 9-4 日期类简介 9-5 java程序国际化的实现 9-6 Random类和Math类 9-7 枚举 9-8 练习题 10-1 java异常处理 10-2 认识异常 10-3 使用try和catch捕获异常 10-4 使用throw和throws引发异常 10-5 finally关键字 10-6 getMessage和printStackTrace方法 10-7 异常分类 10-8 自定义异常类 10-9 练习题 11-1 Java集合框架和泛型机制 11-2 Collection接口 11-3 Set接口实现类 11-4 List接口实现类 11-5 Map接口 11-6 Collections类 11-7 泛型概述 11-8 练习题 12-1 多线程 12-2 线程的生命周期 12-3 线程的调度和优先级 12-4 线程的同步 12-5 集合类的同步问题 12-6 用Timer类调度任务 12-7 练习题 13-1 Java IO 13-2 Java IO原理 13-3 流类的结构 13-4 文件流 13-5 缓冲流 13-6 转换流 13-7 数据流 13-8 打印流 13-9 对象流 13-10 随机存取文件流 13-11 zip文件流 13-12 练习题 14-1 图形用户界面设计 14-2 事件处理机制 14-3 AWT常用组件 14-4 swing简介 14-5 可视化开发swing组件 14-6 声音的播放和处理 14-7 2D图形的绘制 14-8 练习题 15-1 反射 15-2 使用Java反射机制 15-3 反射与动态代理 15-4 练习题 16-1 Java标注 16-2 JDK内置的基本标注类型 16-3 自定义标注类型 16-4 对标注进行标注 16-5 利用反射获取标注信息 16-6 练习题 17-1 顶目实战1-单机版五子棋游戏 17-2 总体设计 17-3 代码实现 17-4 程序的运行与发布 17-5 手动生成可执行JAR文件 17-6 练习题 18-1 Java数据库编程 18-2 JDBC类和接口 18-3 JDBC操作SQL 18-4 JDBC基本示例 18-5 JDBC应用示例 18-6 练习题 19-1 。。。
东南亚位于我国倡导推进的“一带一路”海陆交汇地带,作为当今全球发展最为迅速的地区之一,近年来区域内生产总值实现了显著且稳定的增长。根据东盟主要经济体公布的最新数据,印度尼西亚2023年国内生产总值(GDP)增长5.05%;越南2023年经济增长5.05%;马来西亚2023年经济增速为3.7%;泰国2023年经济增长1.9%;新加坡2023年经济增长1.1%;柬埔寨2023年经济增速预计为5.6%。 东盟国家在“一带一路”沿线国家中的总体GDP经济规模、贸易总额与国外直接投资均为最大,因此有着举足轻重的地位和作用。当前,东盟与中国已互相成为双方最大的交易伙伴。中国-东盟贸易总额已从2013年的443亿元增长至 2023年合计超逾6.4万亿元,占中国外贸总值的15.4%。在过去20余年中,东盟国家不断在全球多变的格局里面临挑战并寻求机遇。2023东盟国家主要经济体受到国内消费、国外投资、货币政策、旅游业复苏、和大宗商品出口价企稳等方面的提振,经济显现出稳步增长态势和强韧性的潜能。 本调研报告旨在深度挖掘东南亚市场的增长潜力与发展机会,分析东南亚市场竞争态势、销售模式、客户偏好、整体市场营商环境,为国内企业出海开展业务提供客观参考意见。 本文核心内容: 市场空间:全球行业市场空间、东南亚市场发展空间。 竞争态势:全球份额,东南亚市场企业份额。 销售模式:东南亚市场销售模式、本地代理商 客户情况:东南亚本地客户及偏好分析 营商环境:东南亚营商环境分析 本文纳入的企业包括国外及印尼本土企业,以及相关上下游企业等,部分名单 QYResearch是全球知名的大型咨询公司,行业涵盖各高科技行业产业链细分市场,横跨如半导体产业链(半导体设备及零部件、半导体材料、集成电路、制造、封测、分立器件、传感器、光电器件)、光伏产业链(设备、硅料/硅片、电池片、组件、辅料支架、逆变器、电站终端)、新能源汽车产业链(动力电池及材料、电驱电控、汽车半导体/电子、整车、充电桩)、通信产业链(通信系统设备、终端设备、电子元器件、射频前端、光模块、4G/5G/6G、宽带、IoT、数字经济、AI)、先进材料产业链(金属材料、高分子材料、陶瓷材料、纳米材料等)、机械制造产业链(数控机床、工程机械、电气机械、3C自动化、工业机器人、激光、工控、无人机)、食品药品、医疗器械、农业等。邮箱:market@qyresearch.com

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值