MTCNN论文阅读笔记

目录

二,Approach

1.总体框架

2.CNN结构

3.训练(training)

三,Experiments

1.训练数据training data


二,Approach

1.总体框架

下图是总体的流程。

首先将给定的图片resize到不同的尺度,构建一个图片金字塔,用于下面的三步级联的网络的输入。

stage1

提出了一个名为proposal network(P-net)的全卷积网络,用于获得候选人脸窗口和和bounding box回归向量。之后这些候选人脸框根据估计出的bounding box回归向量进行校准。之后使用非极大值抑制NMS合并高度重叠的候选框。

stage2:

上一步中所有的候选框被输入到refine network(R-net),这个R-Net进一步排除了大量的错误的候选框,使用bounding box回归和NMS进行校正。

stage3:

这一步与第二步相似,不过在这一步我们的目标是利用更多的监督来确定出人脸区域。特别地,这一步网络会输出五个面部定位地标点的坐标。

 

2.CNN结构

在前人的研究中,多cnn被设计用于人脸检测。但是我们注意到它的表现具有局限性,原因如下:1)卷积层的一些滤波器缺乏多样性,导致可能会限制它们的识别能力。2)与其他的多分类目标检测问题,人脸识别是一个具有挑战性的二分类问题,因此每个层需要的滤波器数目较少。因此我们减少了卷积核的数量,并且将5x5改为了3x3,用于降低计算量,与此同时增加网络的深度来获得更好的效果。结果是:检测效果更好且运行时间更少。网络结构如下图。除了最后的输出层,在卷积层和全连接层后使用PReLU作为非线性激活函数。

 

3.训练(training)

我们使用三个task来训练:是/不是人脸的分类,bounding box回归,人脸标定点的定位。

(1)人脸分类:

学习目标是一个二分类问题的形式。对于每一个样本xi使用交叉熵损失:

其中pi是网络预测出的xi是人脸的概率。记号yi^det∈ {0,1},为标签。

(2)bounding box回归:

对于每一个候选窗口,我们预测它和最近的ground truth框的偏移量offset(框用左上点的坐标和框的高度,宽度表征)。学习目标是一个回归问题,我们对每个样本xi使用欧氏损失:

其中前一个yi^box是通过网络获得的回归目标,后一个yi^box是ground truth坐标。坐标值有四个:左上角坐标,高度和宽度。

(3)人脸标定点定位:

与框回归问题相似,人脸标定点检测为一个回归问题,目标是最小化欧氏损失:

其中前一个yi^landmark表示网络获得的人脸标定点的坐标,后一个yi^landmark表示真实的坐标(都针对第i个样本而言)。一共有五个人脸标定点,包括左眼,右眼,鼻子,左嘴角和右嘴角。

(4)训练:

由于我们在每个cnn中运用了不同的任务,因此在学习过程中有不同类型的训练数据,例如人脸,非人脸,以及局部对齐的人脸。这种情况下,一些损失函数(公式1-3)会没有用到。例如,对于是背景区域的样本,我们只计算Li^det,另外两个损失设为0.这可以直接用一个样本类型指示器来实现。综上,学习目标如下:

其中N为训练样本的数目,aj为任务重要程度的系数。在P-Net和R-Net中我们使用(adet=1,abox=0.5,alandmark=0.5),在O-Net中(adet=1,abox=0.5,alandmark=1)为了得到更精确的人脸标定点定位。bi^j属于{0,1},是类别指示器。此时,使用随机梯度下降来训练上述CNN就很自然了。

(5)在线困难样本挖掘Online Hard sample mining:

与在原始的分类器训练完成之后执行传统的困难样本挖掘不同,我们在人脸/非人脸分类任务中执行在线困难样本挖掘,这很适合训练过程。具体而言,在每一个最小批次(mini-batch)中,我们选取所有样本的前向传播计算出的损失loss,并且挑选出loss排在前70%的样本作为困难样本。然后我们只对这些困难样本在反向传播的过程中计算梯度。这就意味着我们将容易样本忽略,因为这些容易样本对于检测器性能的提升帮助不大。

三,Experiments

1.训练数据training data

分为四种:(1)负样本:区域与任意人脸区域的IoU<0.3。(2)正样本:与某一个人脸区域的IoU>0.65。(3)部分面部:与人脸区域的IoU介于0.4-0.65.(4)标定点人脸:标有五个人脸标定点的人脸。

前两种样本用于训练人脸分类任务,(2)(3)用于训练人脸框的回归,(4)用于训练人脸标定点定位。这四类的比例为3:1:1:2。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值