【题目描述】:
给定n 个整数组成的序列,现在要求将序列分割为m 段,每段子序列中的数在原序列 中连续排列。如何分割才能使这m 段子序列的和的最大值达到最小?
给定n 个整数组成的序列,编程计算该序列的最优m 段分割,使m 段子序列的和的最大值达到最小。
【输入描述】:
输入文件的第1 行中有2 个正整数n 和m。正整数n 是序列的长度;正整数m 是分割的断数。
接下来的一行中有n 个整数。
【输出描述】:
一个数就是计算出的m 段子序列的和的最大值的最小值。
【样例输入】:
9 3
9 8 7 6 5 4 3 2 1
【样例输出】:
17
【时间限制、数据范围及描述】:
时间:1s 空间:128M
n<=100, m<=100
【解题思路】:
用dp[i][j]存储长度为i,分j段后其子序列和的最大值的最小值,那么它由两部分构成:
当j=1时,dp[i][1]表示的是长为i的整个序列的和;
当j>1时,dp[i][j] = MIN(for(k=1; k<=i; k++)MAX(dp[k][j-1], dp[i][1] - dp[k][1]));
这当中k表示的是分段的最后一段子序列的开始下标,所以dp[k][j-1]是前面j-1段子序列和的最大值的最小值,dp[i][1] - dp[k][1]是最后一段子序列的和。所以取这两段中的最大值,在k值变化过程中取得到的最小值就OK了。
【AC代码】:
#include<bits/stdc++.h>
#define M(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define Mod 19650827
using namespace std;
inline void read(int &x){
char ch=getchar(),c=ch;
x=0;
while(ch<'0' || ch>'9'){
c=ch;
ch=getchar();
}
while(ch>='0' && ch<='9'){
x=(x<<1)+(x<<3)+ch-'0';
ch=getchar();
}
if(c=='-')x=-x;
}
int dp[105][105],a[105];
int i,j,k,temp,min1 ;
int n,m;
int main() {
read(n),read(m);
for(i=1;i<=n;i++)read(a[i]);
for(i=1;i<=n;i++)dp[i][1]=dp[i-1][1]+a[i];
for(i=1;i<=n;i++){
for(j=2;j<=m;j++){
min1=1<<30;
for(k=1;k<=i;k++){
temp=max(dp[k][j-1],dp[i][1]-dp[k][1]) ;
if(temp<min1)min1=temp ;
}
dp[i][j]=min1 ;
}
}
printf("%d",dp[n][m]);
return 0 ;
}