LeNet、AlexNet和VGG都有一个共同的设计模式:
通过一系列的卷积层与汇聚层来提取空间结构特征;然后通过全连接层对特征的表征进行处理。
如果在过程的早期使用全连接层,可能会完全放弃表征的空间结构。
而NiN(网络中的网络)提供了一个非常简单的解决方案:在每个像素的通道上分别使用多层感知机。
1. NiN块
卷积层的输入和输出由四维张量组成(样本,通道,高度,宽度)
全连接层的输入和输出通常是二维张量(样本,特征)
NiN在每个像素位置(针对每个高度和宽度)应用一个全连接层,可以将其视为1x1卷积层。将间维度中的每个像素视为单个样本,将通道维度视为不同特征。
第一层为普通卷积层,之后的两个卷积层充当带有ReLU函数的逐像素全连接层。
NiN块
import torch
from torch import nn
from d2l import torch as d2l
# 定义NiN块,(输入通道,输出通道,核大小,步幅,填充)
def nin_block(in_channels, out_channels, kernel_size, strides, padding):
return nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size, strides, padding),
nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU(),
nn.Conv2d(out_channels, out_channels, kernel_size=1), nn.ReLU())
2. NiN模型
1、NiN使用窗口形状为11×11、5×5和3×3的卷积层,输出通道数量与AlexNet中的相同
2、每个NiN块后有一个最大汇聚层,汇聚窗口形状为3×3,步幅为2
3、取消了全连接层,使用一个NiN块,其输出通道数等于标签类别的数量
4、最后放一个全局平均汇聚层,生成一个对数几率
net = nn.Sequential(nin_block(1, 96, kernel_size=11, strides=4, padding=0),
nn.MaxPool2d(3, stride=2),
nin_block(96, 256, kernel_size=5, strides=1, padding=2),
nn.MaxPool2d(3, stride=2),
nin_block(256, 384, kernel_size=3, strides=1, padding=1),
nn.MaxPool2d(3, stride=2),
nn.Dropout(0.5),
# 标签类别
nin_block(384, 10, kernel_size=3, strides=1, padding=1),
nn.AdaptiveAvgPool2d((1, 1)),
# 将四维的输出转成二维的输出,其形状为(批量大小,10)
nn.Flatten())
观察每个块的输出形状
# 创建一个数据样本来查看每个块的输出形状
X = torch.rand(size=(1, 1, 224, 224))
for layer in net:
X = layer(X)
print(layer.__class__.__name__,'output shape:\t', X.shape)
3. 训练模型
定义精度评估函数
"""
定义精度评估函数:
1、将数据集复制到显存中
2、通过调用accuracy计算数据集的精度
"""
def evaluate_accuracy_gpu(net, data_iter, device=None): #@save
# 判断net是否属于torch.nn.Module类
if isinstance(net, nn.Module):
net.eval()
# 如果不在参数选定的设备,将其传输到设备中
if not device:
device = next(iter(net.parameters())).device
# Accumulator是累加器,定义两个变量:正确预测的数量,总预测的数量。
metric = d2l.Accumulator(2)
with torch.no_grad():
for X, y in data_iter:
# 将X, y复制到设备中
if isinstance(X, list):
# BERT微调所需的(之后将介绍)
X = [x.to(device) for x in X]
else:
X = X.to(device)
y = y.to(device)
# 计算正确预测的数量,总预测的数量,并存储到metric中
metric.add(d2l.accuracy(net(X), y), y.numel())
return metric[0] / metric[1]
定义GPU训练函数
"""
定义GPU训练函数:
1、为了使用gpu,首先需要将每一小批量数据移动到指定的设备(例如GPU)上;
2、使用Xavier随机初始化模型参数;
3、使用交叉熵损失函数和小批量随机梯度下降。
"""
#@save
def train_ch6(net, train_iter, test_iter, num_epochs, lr, device):
"""用GPU训练模型(在第六章定义)"""
# 定义初始化参数,对线性层和卷积层生效
def init_weights(m):
if type(m) == nn.Linear or type(m) == nn.Conv2d:
nn.init.xavier_uniform_(m.weight)
net.apply(init_weights)
# 在设备device上进行训练
print('training on', device)
net.to(device)
# 优化器:随机梯度下降
optimizer = torch.optim.SGD(net.parameters(), lr=lr)
# 损失函数:交叉熵损失函数
loss = nn.CrossEntropyLoss()
# Animator为绘图函数
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],
legend=['train loss', 'train acc', 'test acc'])
# 调用Timer函数统计时间
timer, num_batches = d2l.Timer(), len(train_iter)
for epoch in range(num_epochs):
# Accumulator(3)定义3个变量:损失值,正确预测的数量,总预测的数量
metric = d2l.Accumulator(3)
net.train()
# enumerate() 函数用于将一个可遍历的数据对象
for i, (X, y) in enumerate(train_iter):
timer.start() # 进行计时
optimizer.zero_grad() # 梯度清零
X, y = X.to(device), y.to(device) # 将特征和标签转移到device
y_hat = net(X)
l = loss(y_hat, y) # 交叉熵损失
l.backward() # 进行梯度传递返回
optimizer.step()
with torch.no_grad():
# 统计损失、预测正确数和样本数
metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
timer.stop() # 计时结束
train_l = metric[0] / metric[2] # 计算损失
train_acc = metric[1] / metric[2] # 计算精度
# 进行绘图
if (i + 1) % (num_batches // 5) == 0 or i == num_batches - 1:
animator.add(epoch + (i + 1) / num_batches,
(train_l, train_acc, None))
# 测试精度
test_acc = evaluate_accuracy_gpu(net, test_iter)
animator.add(epoch + 1, (None, None, test_acc))
# 输出损失值、训练精度、测试精度
print(f'loss {train_l:.3f}, train acc {train_acc:.3f},'
f'test acc {test_acc:.3f}')
# 设备的计算能力
print(f'{metric[2] * num_epochs / timer.sum():.1f} examples/sec'
f'on {str(device)}')
训练模型
# 训练模型
lr, num_epochs, batch_size = 0.1, 10, 128
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=224)
d2l.train_ch6(net, train_iter, test_iter, num_epochs, lr, d2l.try_gpu())