caffe的solver文件详解

首先,

test_iter * test_batchsize = test set

max_iter * train_batchsize = train set * num_epoch,其中若solver中有iter_size,则train_batchsize = iter_size * model_batchsize。

其中若model中的train层的batchsize过大,有可能会因为GPU显存的制约而无法训练等问题,caffe就自己有个特点设置了iter_size,分担batchsize,将train层的batchsize变小,一次取得张数变少,拿取得的图片训练iter_size次,类似复制,就等于一次取得了原来的batchsize次。而这个iter_size也指的是sub_batch不是输入时得batch,一个输入时batchsize才会引起一次更新参数,才会有前向后向,才是一个迭代。

#往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。
#caffe提供了六种优化算法来求解最优参数,在solver配置文件中,通过设置type类型来选择,默认SGD。

    Stochastic Gradient Descent (type: "SGD")最常用的梯度下降,
    AdaDelta (type: "AdaDelta"),
    Adaptive Gradient (type: "AdaGrad"),
    Adam (type: "Adam"),
    Nesterov’s Accelerated Gradient (type: "Nesterov") and
    RMSprop (type: "RMSProp")


net: "examples/mnist/lenet_train_test.prototxt"  
test_iter: 100
test_interval: 500
base_lr: 0.01
momentum: 0.9
type: SGD
weight_decay: 0.0005
lr_policy: "inv"
gamma: 0.0001
power: 0.75
display: 100
max_iter: 20000
snapshot: 5000
snapshot_prefix: "examples/mnist/lenet"
solver_mode: CPU

net: "examples/mnist/lenet_train_test.prototxt" #网络位置
train_net: "examples/hdf5_classification/logreg_auto_train.prototxt" #也可以分别设定train和test
test_net: "examples/hdf5_classification/logreg_auto_test.prototxt"

test_iter: 100 #测试时把测试集分为100个batchsize,进行100次迭代,反馈修改100次参数,要与test layer中的batch_size结合起来理解

test_interval: 500 #测试间隔。也就是每训练500次,才进行一次测试。

weight_decay:类似正则化,防止权重过大,权重衰减项,防止过拟合的一个参数。
base_lr: 0.01 #base_lr用于设置基础学习率,没有收敛时应设置更小,调参主要就是调整学习率

lr_policy: "inv" #学习率调整的策略,最常用的就是Inv这种,学习率一直不变都后面难以接近收敛。

        - fixed:   保持base_lr不变.
        - step:    如果设置为step,则还需要设置一个stepsize,  返回 base_lr * gamma ^ (floor(iter / stepsize)),其中iter表示当前的迭代次数,stepsize: 1000,代表迭代1000次后你的学习率将改变一次
        - exp:     返回base_lr * gamma ^ iter, iter为当前迭代次数
        - inv:      如果设置为inv,还需要设置一个power, 返回base_lr * (1 + gamma * iter) ^ (- power)
        - multistep: 如果设置为multistep,则还需要设置一个stepvalue。这个参数和step很相似,step是均匀等间隔变化,而multistep则是根据                                             stepvalue值变化
        - poly:     学习率进行多项式误差, 返回 base_lr (1 - iter/max_iter) ^ (power)
        - sigmoid: 学习率进行sigmod衰减,返回 base_lr ( 1/(1 + exp(-gamma * (iter - stepsize))))

momentum :0.9 #动量,加快收敛到最优值,一般也是固定的。

display: 100 #每训练100次,在屏幕上显示一次。如果设置为0,则不显示。

max_iter: 20000 #最大迭代次数,2W次就停止了

snapshot: 5000 #快照。将训练出来的model和solver状态进行保存,snapshot用于设置训练多少次后进行保存
snapshot_prefix: "examples/mnist/lenet" 

solver_mode: CPU #设置运行模式。默认为GPU,如果你没有GPU,则需要改成CPU,否则会出错。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值