1.推导
牛顿法和拟牛顿法是求解无约束最优化问题的常用方法,它们比梯度下降收敛更快。考虑同样的一个无约束最优化问题:
其中f(x)具有二阶连续偏导数的性质,如果k次迭代值为,则可进行二阶泰勒展开:
本文介绍了牛顿法和拟牛顿法在无约束最优化问题中的应用,通过推导展示这两种方法如何利用二阶导数信息快速找到极值点。牛顿法通过迭代寻找每次迭代的一阶导数为零的点,而拟牛顿法通过近似海塞矩阵的逆来简化计算,有时比牛顿法更有效。常见的拟牛顿实现包括DFP和BFGS算法。
牛顿法和拟牛顿法是求解无约束最优化问题的常用方法,它们比梯度下降收敛更快。考虑同样的一个无约束最优化问题:
其中f(x)具有二阶连续偏导数的性质,如果k次迭代值为,则可进行二阶泰勒展开:
13万+

被折叠的 条评论
为什么被折叠?