题目
给定一个整数数组
nums
和一个正整数k
,找出是否有可能把这个数组分成k
个非空子集,其总和都相等。示例 1:
输入: nums = [4, 3, 2, 3, 5, 2, 1], k = 4 输出: True 说明: 有可能将其分成 4 个子集(5),(1,4),(2,3),(2,3)等于总和。
注意:
1 <= k <= len(nums) <= 16
0 < nums[i] < 10000
分析
先求出平均数avg,假如平均数avg不为整数,也就是说数组的数字总和不能平均的分为k份,那么直接返回false。
创建一个布尔数组flag,来记录nums数组中数字的状态(已用还是未用), temp 初始为avg ,temp的作用为记录当前子集的数字总和,当temp等于0时,当前这个子集也就可以确定。index是用来记录遍历数组时从哪个位置开始遍历,以防将前面的数字重新计算。
当k个子集全部求解完,返回true,如果一直求解不出,则返回false。当temp = 0 的时候,也就是新一个子集求解完,那么继续求解下一个子集,k-1,temp重新置为avg;当temp != 0 时,就是子集还未求解完,那么继续求解子集,继续从数组中取数字,递归求解。
代码
class Solution {
public boolean canPartitionKSubsets(int[] nums, int k) {
int sum = 0;
int len = nums.length;
for (int i = 0; i < len; i++)
sum += nums[i];
if(sum % k != 0 ) return false;
int avg = sum / k;
boolean[] flag = new boolean[len];
return help(nums,flag,avg,k,avg,0);
}
public static boolean help(int[] nums, boolean[] flag, int avg, int k, int temp, int index ){
if (k == 0 ) return true;
if (temp == 0)
return help(nums,flag,avg,k-1,avg,0);
for (int i = index; i < nums.length; i++) {
if (flag[i] == true) continue;
flag[i] = true;
if(temp-nums[i]>=0 && help(nums,flag,avg,k,temp-nums[i],index+1)){
return true;
}
flag[i] = false;
}
return false;
}
}