题目
698. 划分为k个相等的子集
给定一个整数数组 nums 和一个正整数 k,找出是否有可能把这个数组分成 k 个非空子集,其总和都相等。
示例 1:
输入: nums = [4, 3, 2, 3, 5, 2, 1], k = 4
输出: True
说明: 有可能将其分成 4 个子集(5),(1,4),(2,3),(2,3)等于总和。
示例 2:
输入: nums = [1,2,3,4], k = 3
输出: false
提示:
1 <= k <= len(nums) <= 16
0 < nums[i] < 10000
每个元素的频率在 [1,4] 范围内
方法1:回溯
public boolean canPartitionKSubsets(int[] nums, int K) {
int N = nums.length;
int sum = 0;
for (int i : nums) sum += i;
if (sum % K != 0) return false;
int T = sum / K;
boolean[] vis = new boolean[N];
return backtracing(nums, vis, K, T, 0, 0);
}
public boolean backtracing(int[] nums, boolean[] vis, int k, int target, int curr, int idx) {
if (k == 1) return true;
if (curr == target) return backtracing(nums, vis, k - 1, target, 0, 0);
for (int i = idx; i < nums.length; i++) {
if (!vis[i] && curr + nums[i] <= target) {
vis[i] = true;
if (backtracing(nums, vis, k, target, curr + nums[i], i + 1)) return true;
vis[i] = false;
}
}
return false;
}