1. 向量Vector
1.1 定义
-
定义:同时具有大小和方向的量
-
记号: A ⃗ \vec A A = [a1 a2 a3]
A B → \overrightarrow {AB} AB = [b1-a1 b2-a2 b3-a3]
ai表示第i个坐标轴上的分量 -
向量的大小:
∣ A ⃗ ∣ = a 1 2 + a 2 2 + a 3 2 = ∑ i = 1 n a i 2 |\vec A| = \sqrt{a_1^2+a_2^2+a_3^2}=\sqrt{ \sum _{i=1}^n a_i^2} ∣A∣=a12+a22+a32=i=1∑nai2 -
向量的方向:
d i r ( A ⃗ ) = A ⃗ ∣ A ⃗ ∣ dir(\vec A) =\frac{ \vec A }{|\vec A|} dir(A)=∣A∣A
1.2 运算
- 加法 A ⃗ + B ⃗ \vec A + \vec B A+B
- 数乘 k A ⃗ k \vec A kA
1.3 意义
- 几何意义
带方向的箭头 - 数字意义
一组数字
2. 点积
2.1 定义
A ⃗ ⋅ B ⃗ = ∑ a i b i = ∣ A ⃗ ∣ ∣ B ⃗ ∣ cos θ \vec A \cdot \vec B = \sum {a_ib_i}= |\vec A| |\vec B| \cos{\theta} A⋅B=∑aibi=∣A∣∣B∣cosθ
A ⃗ ⋅ A ⃗ = ∑ a i a i = ∣ A ⃗ ∣ 2 \vec A \cdot \vec A = \sum {a_ia_i} = |\vec A|^2 A⋅A=∑aiai=∣A∣2
2.2 运算
由定义可得,点积满足
乘法交换律: A ⃗ ⋅ B ⃗ = B ⃗ ⋅ A ⃗ \vec A \cdot \vec B = \vec B \cdot \vec A A⋅B=B⋅A
2.3 定理(点积的几何意义)
定理:
A ⃗ ⋅ B ⃗ = ∣ A ⃗ ∣ ∣ B ⃗ ∣ cos θ \vec A \cdot \vec B = |\vec A| |\vec B| \cos{\theta} A⋅B=∣A∣∣B∣cosθ
证明:
余弦定理——给定两边 A ⃗ \vec A A和 A ⃗ \vec A A,以及两边的夹角 θ \theta θ和第三边 C ⃗ = A ⃗ − B ⃗ \vec C=\vec A - \vec B C=