多变量微积分

这篇博客详细介绍了多变量微积分中的关键概念,包括向量的定义、运算及几何意义,点积的定义、运算、几何定理及其应用,行列式的几何解释,以及叉积的概念、混合积和应用。还涉及到矩阵和逆矩阵在解决线性方程组中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 向量Vector

1.1 定义

  1. 定义:同时具有大小和方向的量

  2. 记号: A ⃗ \vec A A = [a1 a2 a3]
    A B → \overrightarrow {AB} AB = [b1-a1 b2-a2 b3-a3]
    ai表示第i个坐标轴上的分量

  3. 向量的大小:
    ∣ A ⃗ ∣ = a 1 2 + a 2 2 + a 3 2 = ∑ i = 1 n a i 2 |\vec A| = \sqrt{a_1^2+a_2^2+a_3^2}=\sqrt{ \sum _{i=1}^n a_i^2} A =a12+a22+a32 =i=1nai2

  4. 向量的方向:
    d i r ( A ⃗ ) = A ⃗ ∣ A ⃗ ∣ dir(\vec A) =\frac{ \vec A }{|\vec A|} dir(A )=A A

1.2 运算

  1. 加法 A ⃗ + B ⃗ \vec A + \vec B A +B
  2. 数乘 k A ⃗ k \vec A kA

1.3 意义

  1. 几何意义
    带方向的箭头
  2. 数字意义
    一组数字

2. 点积

2.1 定义

A ⃗ ⋅ B ⃗ = ∑ a i b i = ∣ A ⃗ ∣ ∣ B ⃗ ∣ cos ⁡ θ \vec A \cdot \vec B = \sum {a_ib_i}= |\vec A| |\vec B| \cos{\theta} A B =aibi=A B cosθ

A ⃗ ⋅ A ⃗ = ∑ a i a i = ∣ A ⃗ ∣ 2 \vec A \cdot \vec A = \sum {a_ia_i} = |\vec A|^2 A A =aiai=A 2

2.2 运算

由定义可得,点积满足
乘法交换律: A ⃗ ⋅ B ⃗ = B ⃗ ⋅ A ⃗ \vec A \cdot \vec B = \vec B \cdot \vec A A B =B A

2.3 定理(点积的几何意义)

定理:
A ⃗ ⋅ B ⃗ = ∣ A ⃗ ∣ ∣ B ⃗ ∣ cos ⁡ θ \vec A \cdot \vec B = |\vec A| |\vec B| \cos{\theta} A B =A B cosθ

证明:
余弦定理——给定两边 A ⃗ \vec A A A ⃗ \vec A A ,以及两边的夹角 θ \theta θ和第三边 C ⃗ = A ⃗ − B ⃗ \vec C=\vec A - \vec B C =

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值