【CV数据集介绍-10】个人防护装备检测数据集PPE-Detection-YOLOv8:保障工作场所安全的有力工具

🧑 博主简介:曾任某智慧城市类企业算法总监,目前在美国市场的物流公司从事高级算法工程师一职,深耕人工智能领域,精通python数据挖掘、可视化、机器学习等,发表过AI相关的专利并多次在AI类比赛中获奖。CSDN人工智能领域的优质创作者,提供AI相关的技术咨询、项目开发和个性化解决方案等服务,如有需要请站内私信或者联系任意文章底部的的VX名片(ID:xf982831907

💬 博主粉丝群介绍:① 群内初中生、高中生、本科生、研究生、博士生遍布,可互相学习,交流困惑。② 热榜top10的常客也在群里,也有数不清的万粉大佬,可以交流写作技巧,上榜经验,涨粉秘籍。③ 群内也有职场精英,大厂大佬,可交流技术、面试、找工作的经验。④ 进群免费赠送写作秘籍一份,助你由写作小白晋升为创作大佬。⑤ 进群赠送CSDN评论防封脚本,送真活跃粉丝,助你提升文章热度。有兴趣的加文末联系方式,备注自己的CSDN昵称,拉你进群,互相学习共同进步。

在这里插入图片描述

【CV数据集介绍-10】个人防护装备检测数据集PPE-Detection-YOLOv8:保障工作场所安全的有力工具

一、引言

在工业、建筑和实验室等工作场所,确保工作人员正确佩戴个人防护装备(PPE)至关重要。今天,我将为大家介绍一个名为 PPE-Detection-YOLOv8 的数据集,它为从事安全应用的 AI 研究人员、安全工程师和开发人员提供了一个强大的资源,助力提高工作场所的安全性和合规性监控的自动化,YOLO格式的数据集。
在这里插入图片描述

二、数据集概览

  PPE-Detection-YOLOv8 数据集 是一个专为检测工作场所环境中个人防护装备而设计的数据集,由 Roboflow Universe Projects 提供。该数据集包含大量高质量的带注释图像,涵盖了不同工作环境中工作人员佩戴或未佩戴基本安全装备(如头盔、手套、护目镜和背心)的各种场景。这些图像为训练和评估基于先进对象检测算法 YOLOv8 的模型提供了丰富的数据基础。

三、数据集的主要特点

   * 数据规模 :虽然具体图像数量未明确提及,但数据集提供了足够的样本,以支持模型的有效训练和评估。这些图像是从多种工作环境中采集的,具有广泛的代表性,一共2.52GB。

   * 类别信息 :数据集涵盖了多种常见的个人防护装备类别,包括[‘Fall-Detected’, ‘Gloves’, ‘Goggles’, ‘Hardhat’, ‘Ladder’, ‘Mask’, ‘NO-Gloves’, ‘NO-Goggles’, ‘NO-Hardhat’, ‘NO-Mask’, ‘NO-Safety Vest’, ‘Person’, ‘Safety Cone’, ‘Safety Vest’]等14个类别。每个类别都有大量的图像样本,以确保模型能够准确地识别不同类型的 PPE。

   * 对象级注释 :图像中的每个 PPE 对象都进行了精确的标注,这使得数据集非常适合用于训练 YOLOv8 模型执行实时检测任务。

   * 适用场景 :该数据集适用于多种工作场所环境,如工业、建筑和实验室等,为开发针对不同场景的安全监控系统提供了灵活的数据支持。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

四、数据集的应用价值

   * 提高安全合规性 :通过实时检测工作人员是否正确佩戴 PPE,该数据集有助于提高工作场所的安全合规性。AI 系统可以及时发现未正确佩戴 PPE 的情况,并发出警报,从而减少安全事故的发生。

   * 自动化安全监控 :利用基于此数据集训练的模型,可以实现工作场所安全监控的自动化。这不仅提高了监控效率,还减少了人工监控的成本和疲劳带来的误判风险。

   * 定制化安全解决方案 :研究人员和开发人员可以根据具体的工作场所需求,利用该数据集开发定制化的安全解决方案,以满足不同行业和场景的安全要求。

  如果您正在从事工作场所安全相关的 AI 研究或开发项目,这个数据集将是您的得力助手。希望它能够为您的工作带来便利,共同为创造更安全的工作环境贡献力量。

  注: 博主目前收集了6900+份相关数据集,有想要的可以领取部分数据:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

云天徽上

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值