关于dataset和dataLoader怎样封装数据

使用pytorch进行模型训练时,我们通常会将数据包装成dataLoader,然后放入模型进行训练。dataLoader实质上就是一个数据加载器,必须要传入一个数据集类dataset。pytorch提供的dataset是一个抽象类,需要自己实现该类。继承dataset需要实现getitem和len两个方法,具体如下:

class MyDataSet(Dataset):
    def __init__(self, imgs, labels):
        self._data = imgs
        self._label = labels
    def __getitem__(self,idx):
        img = self._data[idx]
        label = self._label[idx]
        return img,label
    def __len__(self):
        return len(self._data)

然后将dataset传入dataloader中:

my_dataSet = MyDataSet(imgs, labels)

    dataloader = DataLoader(dataset=my_dataSet, batch_size=batch_size, num_workers=device_num, shuffle=True)

关于dataloader的具体参数,如下(可自己查看官方文档),

dataset(Dataset):
传入的数据集

batch_size(int, optional):
每个batch有多少个样本

shuffle(bool, optional):
在每个epoch开始的时候,对数据进行重新打乱

sampler(Sampler, optional):
自定义从数据集中取样本的策略,如果指定这个参数,那么shuffle必须为False

batch_sampler(Sampler, optional):
与sampler类似,但是一次只返回一个batch的indices(索引),需要注意的是,一旦指定了这个参数,那么batch_size,shuffle,sampler,drop_last就不能再制定了(互斥——Mutually exclusive)

num_workers (int, optional):
这个参数决定了有几个进程来处理data loading。0意味着所有的数据都会被load进主进程。(默认为0)

collate_fn (callable, optional):
将一个list的sample组成一个mini-batch的函数

pin_memory (bool, optional):
如果设置为True,那么data loader将会在返回它们之前,将tensors拷贝到CUDA中的固定内存(CUDA pinned memory)中.

drop_last (bool, optional):
如果设置为True:这个是对最后的未完成的batch来说的,比如你的batch_size设置为64,而一个epoch只有100个样本,那么训练的时候后面的36个就被扔掉了…
如果为False(默认),那么会继续正常执行,只是最后的batch_size会小一点。

timeout(numeric, optional):
如果是正数,表明等待从worker进程中收集一个batch等待的时间,若超出设定的时间还没有收集到,那就不收集这个内容了。这个numeric应总是大于等于0。默认为0

worker_init_fn (callable, optional):
每个worker初始化函数 If not None, this will be called on each
worker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and before data loading. (default: None)

PyTorch中,数据是构建深度学习模型的重要一环。为了高效处理大规模数据集,PyTorch提供了三个主要的工具:DatasetDataLoader和TensorDatasetDataset是一个抽象类,用于自定义数据集。我们可以继承Dataset类,并重写其中的__len__和__getitem__方法来实现自己的数据加载逻辑。__len__方法返回数据集的大小,而__getitem__方法根据给定的索引返回样本和对应的标签。通过自定义Dataset类,我们可以灵活地处理各种类型的数据集。 DataLoader数据加载器,用于对数据集进行批量加载。它接收一个Dataset对象作为输入,并可以定义一些参数例如批量大小、是否乱序等。DataLoader能够自动将数据集划分为小批次,将数据转换为Tensor形式,然后通过迭代器的方式供模型训练使用。DataLoader数据准备和模型训练的过程中起到了桥梁作用。 TensorDataset是一个继承自Dataset的类,在构造时将输入数据和目标数据封装Tensor。通过TensorDataset,我们可以方便地处理Tensor格式的数据集。TensorDataset可以将多个Tensor按行对齐,即将第i个样本从各个Tensor中出,构一个新的Tensor作为数据集的一部分。这对于处理多输入或者多标签的情况非常有用。 总结来说,Dataset提供了自定义数据集的接口,DataLoader提供了批量加载数据集的能力,而TensorDataset则使得我们可以方便地处理Tensor格式的数据集。这三个工具的配合使用可以使得数据处理变得更加方便和高效。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

木羊子羽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值