使用pytorch进行模型训练时,我们通常会将数据包装成dataLoader,然后放入模型进行训练。dataLoader实质上就是一个数据加载器,必须要传入一个数据集类dataset。pytorch提供的dataset是一个抽象类,需要自己实现该类。继承dataset需要实现getitem和len两个方法,具体如下:
class MyDataSet(Dataset):
def __init__(self, imgs, labels):
self._data = imgs
self._label = labels
def __getitem__(self,idx):
img = self._data[idx]
label = self._label[idx]
return img,label
def __len__(self):
return len(self._data)
然后将dataset传入dataloader中:
my_dataSet = MyDataSet(imgs, labels)
dataloader = DataLoader(dataset=my_dataSet, batch_size=batch_size, num_workers=device_num, shuffle=True)
关于dataloader的具体参数,如下(可自己查看官方文档),
dataset(Dataset):
传入的数据集
batch_size(int, optional):
每个batch有多少个样本
shuffle(bool, optional):
在每个epoch开始的时候,对数据进行重新打乱
sampler(Sampler, optional):
自定义从数据集中取样本的策略,如果指定这个参数,那么shuffle必须为False
batch_sampler(Sampler, optional):
与sampler类似,但是一次只返回一个batch的indices(索引),需要注意的是,一旦指定了这个参数,那么batch_size,shuffle,sampler,drop_last就不能再制定了(互斥——Mutually exclusive)
num_workers (int, optional):
这个参数决定了有几个进程来处理data loading。0意味着所有的数据都会被load进主进程。(默认为0)
collate_fn (callable, optional):
将一个list的sample组成一个mini-batch的函数
pin_memory (bool, optional):
如果设置为True,那么data loader将会在返回它们之前,将tensors拷贝到CUDA中的固定内存(CUDA pinned memory)中.
drop_last (bool, optional):
如果设置为True:这个是对最后的未完成的batch来说的,比如你的batch_size设置为64,而一个epoch只有100个样本,那么训练的时候后面的36个就被扔掉了…
如果为False(默认),那么会继续正常执行,只是最后的batch_size会小一点。
timeout(numeric, optional):
如果是正数,表明等待从worker进程中收集一个batch等待的时间,若超出设定的时间还没有收集到,那就不收集这个内容了。这个numeric应总是大于等于0。默认为0
worker_init_fn (callable, optional):
每个worker初始化函数 If not None, this will be called on each
worker subprocess with the worker id (an int in [0, num_workers - 1]) as input, after seeding and before data loading. (default: None)