2020年3月底学习——概率论篇

1 任务

  1. 复习记录线性代数知识
  2. 读一遍PCB论文
  3. 尝试实现RPP
  4. 尝试程序基于视频实现
  5. 完成论文绪论部分

2 学习

2.1 方差

统计描述定义

方差用来衡量随机变量或一组数据离散程度,统计中的方差(样本方差)是每个样本值全体样本值的平均数之差的平方值的平均数
总体方差计算:
σ 2 = Σ ( X − μ ) 2 N σ^2=\frac{Σ(X-μ)^2}{N} σ2=NΣ(Xμ)2
其中σ2为总体方差,X为变量,μ为总体均值,N为总体例数
实际工作中,总体均数难以得到时,应用样本统计量代替总体参数。
样本方差计算:
S 2 = Σ ( X − X ‾ ) n − 1 S^2=\frac{Σ(X-\overline{X})}{n-1} S2=n1Σ(XX)
其中S2为样本方差,X为变量, X ‾ \overline{X} X为样本均值,n为样本例数

概率分布定义

在概率分布中,设X是一个离散型随机变量,若 E [ ( X − E ( X ) ) 2 ] E[(X-E(X))^2] E[(XE(X))2]存在,则称它为X的方差,记为 D ( X ) D(X) D(X), V a r ( X ) Var(X) Var(X) D X DX DX D ( X ) \sqrt{D(X)} D(X) 称为标准差或均方差。
方差和期望的关系:
D ( X ) = E [ ( X − E ( X ) ) 2 ] = E ( X 2 ) − E ( X ) 2 \begin{aligned}D(X)&=E[(X-E(X))^2]\\&=E(X^2)-E(X)^2\end{aligned} D(X)=E[(XE(X))2]=E(X2)E(X)2

2.2 协方差

定义

协方差(Covariance)在概率论和统计学中用于衡量两个变量的总体误差。而方差是协方差的一种特殊情况,即当两个变量是相同的情况。
期望值分别为E[X]E[Y]的两个实随机变量X与Y之间的协方差Cov(X,Y)定义为:
C o v ( X , Y ) = E [ ( X − E [ X ] ) ( Y − E ( Y ) ) ] = E [ X Y ] − 2 E [ X ] E [ Y ] + E [ X ] E [ Y ] = E [ X Y ] − E [ X ] E [ Y ] \begin{aligned}Cov(X,Y)&=E[(X-E[X])(Y-E(Y))]\\ &=E[XY]-2E[X]E[Y]+E[X]E[Y]\\&=E[XY]-E[X]E[Y]\end{aligned} Cov(X,Y)=E[(XE[X])(YE(Y))]=E[XY]2E[X]E[Y]+E[X]E[Y]=E[XY]E[X]E[Y]
统计学公式为:
σ ( x , y ) = 1 n − 1 ∑ i = 1 n ( x i − x ‾ ) ( y i − y ‾ ) σ(x,y)=\frac{1}{n-1}\sum_{i=1}^n(x_i-\overline{x})(y_i-\overline{y}) σ(x,y)=n11i=1n(xix)(yiy)
显然,当x,y相等时,表示的是方差
协方差与方差的关系及一些性质:
D ( X + Y ) = D ( X ) + D ( Y ) + 2 C o v ( X , Y ) D ( X − Y ) = D ( X ) + D ( Y ) − 2 C o v ( X , Y ) C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , Y ) + C o v ( X 2 , Y ) \begin{aligned}&D(X+Y)=D(X)+D(Y)+2Cov(X,Y)\\&D(X-Y)=D(X)+D(Y)-2Cov(X,Y)\\&Cov(X_1+X_2,Y)=Cov(X_1,Y)+Cov(X_2,Y)\end{aligned} D(X+Y)=D(X)+D(Y)+2Cov(X,Y)D(XY)=D(X)+D(Y)2Cov(X,Y)Cov(X1+X2,Y)=Cov(X1,Y)+Cov(X2,Y)

协方差矩阵

参考来源:知乎
在统计学与概率论中,协方差矩阵的每个元素是各个向量元素之间的协方差。
样例:
根据方差的定义,给定 d d d个随机变量 x k , k = 1 , 2 , . . . , d x_k,k=1,2,...,d xk,k=1,2,...,d,则这些随机变量的方差为:
σ ( x k , x k ) = 1 n − 1 ∑ i = 1 n ( x k i − x ‾ k ) 2 , k = 1 , 2 , . . . , d σ(x_k,x_k)=\frac{1}{n-1}\sum_{i=1}^n(x_{ki}-\overline{x}_k)^2,k=1,2,...,d σ(xk,xk)=n11i=1n(xkixk)2,k=1,2,...,d
其中, x k i x_{ki} xki表示随机变量 x k x_{k} xk中的第 i i i个观测样本, n n n表示样本量,每个随机变量所对应的观测样本数量均为 n n n
对于这些随机变量,可以根据定义求出两两的协方差:
σ ( x m , x k ) = 1 n − 1 ∑ i = 1 n ( x m i − x ‾ m ) ( x k i − x ‾ k ) σ(x_m,x_k)=\frac{1}{n-1}\sum_{i=1}^n(x_{mi}-\overline{x}_m)(x_{ki}-\overline{x}_k) σ(xm,xk)=n11i=1n(xmixm)(xkixk)
协方差矩阵为:
Σ = [ σ ( x 1 , x 1 ) ⋯ σ ( x 1 , x d ) ⋮ ⋱ ⋮ σ ( x d , x 1 ) ⋯ σ ( x d , x d ) ] ∈ R d × d \Sigma=\begin{bmatrix}σ(x_1,x_1)&\cdots&σ(x_1,x_d)\\\vdots&\ddots&\vdots\\σ(x_d,x_1)&\cdots&σ(x_d,x_d)\end{bmatrix}\in\mathbb{R}^{d\times{d}} Σ=σ(x1,x1)σ(xd,x1)σ(x1,xd)σ(xd,xd)Rd×d
对角线上的元素为各个随机变量的方差,非对角线上的元素为两两随机变量之间的协方差,根据协方差的定义,我们可以认定:矩阵 Σ \Sigma Σ为对称矩阵(symmetric matrix),其大小为 d × d d\times{d} d×d

2.3 概率论复习

基本概念
  1. 互斥事件(互不相容): A ⋂ B = ∅ A\bigcap{B}=\emptyset AB=,A,B不能同时发生
  2. 对立事件: A ⋃ B = S , A ⋂ B = ∅ A\bigcup{B}=S,A\bigcap{B}=\emptyset AB=S,AB=,A和B必有一个发生且仅有一个发生
    对立事件一定是互斥事件,反之不成立
  3. 对于任意两事件A,B,有: P ( A ⋃ B ) = P ( A ) + P ( B ) − P ( A B ) P(A\bigcup{B})=P(A)+P(B)-P(AB) P(AB)=P(A)+P(B)P(AB)
    多个事件的情况: P ( A 1 ⋃ A 2 ⋃ A 3 ) = P ( A 1 ) + P ( A 2 ) + P ( A 3 ) − P ( A 1 A 2 ) − P ( A 1 A 3 ) − P ( A 2 A 3 ) + P ( A 1 A 2 A 3 ) P(A_1\bigcup{A_2}\bigcup{A_3})=P(A_1)+P(A_2)+P(A_3)-P(A_1A_2)-P(A_1A_3)-P(A_2A_3)+P(A_1A_2A_3) P(A1A2A3)=P(A1)+P(A2)+P(A3)P(A1A2)P(A1A3)P(A2A3)+P(A1A2A3)
  4. 条件概率:事件A发生的条件下事件B发生的概率 P ( B ∣ A ) P(B|A) P(BA)
    P ( B ∣ A ) = P ( A B ) P ( A ) P(B|A)=\frac{P(AB)}{P(A)} P(BA)=P(A)P(AB)
  5. 全概率公式:设试验E的样本空间为 S S S A A A E E E的事件, B 1 , B 2 , ⋯   , B n B_1,B_2,\cdots,B_n B1,B2,,Bn S S S的一个划分,且 P ( B i ) > 0    ( i = 1 , 2 , ⋯   , n ) P(B_i)>0\,\,(i=1,2,\cdots,n) P(Bi)>0(i=1,2,,n),则:
    P ( A ) = P ( A ∣ B 1 ) P ( B 1 ) + P ( A ∣ B 2 ) P ( B 2 ) + ⋯ + P ( A ∣ B n ) P ( B n ) P(A)=P(A|B_1)P(B_1)+P(A|B_2)P(B_2)+\cdots+P(A|B_n)P(B_n) P(A)=P(AB1)P(B1)+P(AB2)P(B2)++P(ABn)P(Bn)
  6. 贝叶斯(Bayes)公式:设试验E的样本空间为 S S S A A A E E E的事件, B 1 , B 2 , ⋯   , B n B_1,B_2,\cdots,B_n B1,B2,,Bn S S S的一个划分,且 P ( A ) > 0 , P ( B i ) > 0    ( i = 1 , 2 , ⋯   , n ) P(A)>0,P(B_i)>0\,\,(i=1,2,\cdots,n) P(A)>0,P(Bi)>0(i=1,2,,n),则:
    P ( B i ∣ A ) = P ( A ∣ B i ) P ( B i ) ∑ j = 1 n P ( A ∣ B j ) P ( B j ) , i = 1 , 2 , ⋯   , n P(B_i|A)=\frac{P(A|B_i)P(B_i)}{\sum_{j=1}^nP(A|B_j)P(B_j)},i=1,2,\cdots,n P(BiA)=j=1nP(ABj)P(Bj)P(ABi)P(Bi),i=1,2,,n
    若上述5,6两式n=2,并将 B 1 B_1 B1记为 B B B,此时 B 2 B_2 B2就是 B ‾ \overline{B} B,那么全概率公式和贝叶斯公式分别写为:
    P ( A ) = P ( A ∣ B ) P ( B ) + P ( A ∣ B ‾ ) P ( B ‾ ) P(A)=P(A|B)P(B)+P(A|\overline{B})P(\overline{B}) P(A)=P(AB)P(B)+P(AB)P(B) P ( B ∣ A ) = P ( A B ) P ( A ) = P ( A ∣ B ) P ( B ) P ( A ∣ B ) P ( B ) + P ( A B ‾ ) P ( B ‾ ) P(B|A)=\frac{P(AB)}{P(A)}=\frac{P(A|B)P(B)}{P(A|B)P(B)+P(A\overline{B})P(\overline{B})} P(BA)=P(A)P(AB)=P(AB)P(B)+P(AB)P(B)P(AB)P(B)
随机变量及分布

随 机 变 量 { 离 散 型 非 离 散 型 { 连 续 型 其 他 随机变量\begin{cases}离散型\\非离散型\begin{cases}连续型\\其他\end{cases}\end{cases} {

  1. 二项分布(Binomial Distribution):又称伯努利分布,表示为 X ∼ B ( n , p ) X\sim{B(n,p)} XB(n,p),即重复n次的伯努利试验(Bernoulli Experiment),如果事件发生的概率是 p p p,则不发生的概率 q = 1 − p q=1-p q=1p,N次独立重复试验中发生 k k k次的概率是(其中 C n k C^k_n Cnk是组合数):
    P ( X = k ) = C n k ∗ p k ∗ q n − k    , k = 0 , 1 , 2 , ⋯   , n P(X=k)=C^k_n*p^k*q^{n-k}\,\,,k=0,1,2,\cdots,n P(X=k)=Cnkpkqnk,k=0,1,2,,n期望值: E ( ξ ) = n p E(\xi)=np E(ξ)=np,方差: D ( ξ ) = n p q D(\xi)=npq D(ξ)=npq
  2. 连续型随机变量
    通俗理解:连续型随机变量求概率可对概率密度积分
    对于随机变量 X X X的分布函数 F ( x ) F(x) F(x),存在非负函数 f ( x ) f(x) f(x),使对于任意实数 x x x有: F ( x ) = ∫ − ∞ x f ( t )   d t F(x)=\int_{-\infin}^xf(t)\,{\rm d}t F(x)=xf(t)dt则称 X X X为连续型随机变量,其中函数 f ( x ) f(x) f(x)称为 X X X概率密度函数,简称概率密度。性质:
    f ( x ) ≥ 0 ,            ∫ − ∞ + ∞ f ( x )   d x = 1 f(x)\geq0,~~~~~~~~~~\int_{-\infin}^{+\infin}f(x)\,{\rm d}x=1 f(x)0,          +f(x)dx=1
    均匀分布:若连续型随机变量 X X X具有概率密度: f ( x ) = { 1 a − b , a < x < b 0 , 其 他 f(x)=\begin{cases}\frac{1}{a-b},&{a<x<b}\\0,&其他\end{cases} f(x)={ab1,0,a<x<b则称X在区间 ( a , b ) (a,b) (a,b)上服从均匀分布,记为 X ∼ U ( a , b ) X\sim{U(a,b)} XU(a,b) X X X的分布函数为:
    F ( x ) = { 0 , x < a x − a b − a , a ≤ x < b 1 , x ≥ b F(x)=\begin{cases}0,&x<a\\\frac{x-a}{b-a},&{a\leq{x}<b}\\1,&x\geq{b}\end{cases} F(x)=0,baxa,1,x<aax<bxb
    期望值: E ( x ) = a + b 2 E(x)=\frac{a+b}{2} E(x)=2a+b,方差: D ( x ) = ( a − b ) 2 12 D(x)=\frac{(a-b)^2}{12} D(x)=12(ab)2
    指数分布:若连续型随机变量 X X X具有概率密度: f ( x ) = { 1 θ e − x / θ , x > 0 0 , 其 他 f(x)=\begin{cases}\frac{1}{\theta}e^{-x/\theta},&{x>0}\\0,&其他\end{cases} f(x)={θ1ex/θ,0,x>0其中 θ > 0 \theta>0 θ>0为常数,则称 X X X服从参数为 θ \theta θ的指数分布。
    正态(高斯)分布:连续型随机变量 X X X具有概率密度 f ( x ) = 1 2 π σ e − ( x − μ ) 2 2 σ 2 , x ∈ ( − ∞ , + ∞ ) f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{2\sigma^2}},x\in(-\infin,+\infin) f(x)=2π σ1e2σ2(xμ)2,x(,+)则称 X X X服从参数为 μ , σ \mu,\sigma μ,σ的正态分布或高斯分布,其中 μ , σ 2 \mu,\sigma^2 μ,σ2分别为期望和方差, 记为: X ∼ N ( μ , σ 2 ) X\sim{N(\mu,\sigma^2)} XN(μ,σ2) Y = X − μ σ ∼ N ( 0 , 1 ) Y=\frac{X-\mu}{\sigma}\sim{N(0,1)} Y=σXμN(0,1)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

远方的河岸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值