动态规划算法详解——三大基本要素、解题步骤、算法优化和例题详解

本文详细介绍了动态规划算法的思想、适用场景及三大基本要素:状态、决策和边界条件。通过斐波那契数列和求连续子数组最大和的例题,解析动态规划的解题步骤,展示如何利用动态规划优化递归算法,降低时间复杂度至O(n),同时讲解了空间复杂度优化技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1动态规划思想

动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题。
动态规划的过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。

2适用场景

动态规划常常适用于有重叠子问题和最优子结构性质的问题,动态规划方法所耗时间往往远少于朴素解法。

  • 最优化原理:假设问题的最优解所包括的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。
  • 无后效性:即某阶段状态一旦确定。就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响曾经的状态。仅仅与当前状态有关。
  • 有重叠子问题:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到(该性质并非动态规划适用的必要条件,可是假设没有这条性质。动态规划算法同其它算法相比就不具备优势)。

3动态规划的三大基本要素

动态规划简单来说就是,利用历史记录,来避免我们的重复计算。而这些历史记录,我们得需要一些变量来保存,一般是用一维数组或者二维数组来保存。下面我们先来讲下做动态规划题很重要的三大基本要素:

  • 确定状态和保存状态变量
    将问题发展到各个阶段时所处于的各种客观情况用不同的状态表示出来。最简单的就是用数组来保存当前的每一个状态,这个状态就是每个子问题的决策。
  • 确定决策并写出状态转移方程
    因为决策和状态转移有着天然的联系,状态转移就是根据上一阶段的状态和决策来导出本阶段的状态。所以如果确定了决策,状态转移方程也就可写出。但事实上常常是反过来做,根据相邻两个阶段的状态之间的关系来确定决策方法和状态转移方程。
  • 确定边界条件
    确定边界条件其实就是跟递归的终止条件是类似的。给出的状态转移方程是一个递推式,需要一个递推的终止条件或边界条件。

4解题步骤

一般,只要解决问题的阶段、状态和状态转移决策确定了,就可以写出状态转移方程(包括边界条件)。
根据动态规划的三大基本要素可以设计解题步骤如下:

  • 状态定义: 每个状态的决策,存放每个状态的变量,
  • 状态转移方程: 当前状态与上一个状态之间的关系
  • 初始状态: 初始的状态或者边界条件

5例题分析

5.1斐波拉契数列

斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家莱昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:0、1、1、2、3、5、8、13、21、34、……
斐波那契数列以如下被以递推的方法定义:
F ( 1 ) = 1 , F ( 2 ) = 1 , F ( n ) = F ( n − 1 ) + F ( n − 2 ) ( n ≥ 3 , n ∈ N ∗ ) F(1)=1,F(2)=1, F(n)=F(n - 1)+F(n - 2)(n ≥ 3,n ∈ N^*) F(1)=1F(2)=1,F(n)=F(n1)+F(n2)n3nN

5.1.1递归法求解

由上篇文章递归算法递归算法详解——递归算法的三要素以及例题分析
.
可以写出递归形式的求解为

class Solution {
   
    private final int model = 1000000007;
    public int fib(int n) {
   
        if (n < 2){
   
            return n;
        }
        return ((fib(n - 1) % model + fib(n - 2) % model )) % model;
    }
}

答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。防止溢出。

若用递归法提交答案后可以看出会超出时间限制。
在这里插入图片描述
分析可以看出,在递归时会重复计算,如下所示,以F(6)为例:
在这里插入图片描述
复杂度分析

  • 时间复杂度分析: O ( n ) O(n) O(n).。最大递归次数是 n n n
  • 空间复杂度分析: O ( 1 ) O(1) O(1)。使用常数大小的额外空间。

5.1.2动态规划求解

  • 状态定义: d p dp dp 为一维数组,其中 d p [ i ] dp[i] dp[i] 的值代表 斐波那契数列第 i i i 个数字 。
  • 转移方程: d p [ i + 1 ] = d p [
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值