MobileNetV2 网络深度解析与Pytorch实现

Table of Contents

正文

1.原理解析

 Linear Bottleneck 

Inverted Residual Blocks

bottleneck

2.网络结构

3.MobileNetV2实现

3.1 BottleNeck

3.2 MobileNetV2整体实现


论文名:MobileNetV2: Inverted Residuals and Linear Bottlenecks

下载地址:https://arxiv.org/pdf/1801.04381.pdf

正文

      MobileNet V2是为了解决MobileNet V1在训练中特征退化的问题而提出的(了解MobileNetV1请移步博客MobileNetV1网络深入解析),为了解决这个问题,论文提出了线性瓶颈的倒残差结构the inverted residual with linear bottleneck,它主要包含linear bottleneck和Inverted residuals。

1.原理解析

  MobileNet V2的设计思想都包含在倒残差结构中,它主要包含两个内容linear bottleneckInverted residuals,后面分别对它们进行讲解.

      MobileNetV1为什么会出现特征退化呢?论文作者认为这是ReLU导致的,并给出了解释.这块我没太读懂,就简单的说一下自己的理解吧.论文中给出下面这个图表达的意思是:输入数据经过conv处理得到输出数据,输出数据的维度越高,经过ReLU的处理后数据的损失才越小.那么现在有两种解决办法:要么提高输出数据的维度,要么去掉ReLU函数采用线性单元

               

 Linear Bottleneck 

        由上述分析可知,为了解决特征退化的最直接的方法就是将ReLU函数换成线性函数(其实就是去掉ReLU函数,不做处理),为了保证深度可分离卷积结构(Depthwise Separable Convolutions,简称DS conv)的非线性拟合能力,只将结构中1*1卷积(pointwise conv)后面的ReLU函数换成线性函数,由此得到了Linear Bottleneck.

Inverted Residual Blocks

       特征维度越高,经过ReLU函数处理后信息丢失越少,因此在DS conv结构之前增加一个1*1卷积将feature map的维度提升,从而保证在经过ReLU处理后信息丢失的更少;同时借鉴ResNet的跨层连接shortcut的思想,提高特征的利用率。ResNet的操作是先降维再升维,而本文是先升维再将维,因此叫做倒残差模型Inverted Residual Blocks,其结构图如下所示:

                

bottleneck

       将Linear Bottleneck和Inverted Residual Blocks结合到一起,得到MobileNet V2的结构基元bottleneck,其结构图如下所示(方块的高度即代表通道数):

                                          

  当stride=2时,输入输出的维度不同,不进行shortcut连接操作。

2.网络结构

                                    

  其中t表示扩增的倍数,c表示输出特征图的channel,n表示层的重复次数,s表示stride。

需要注意的是:

1) 当n>1时(即该瓶颈层重复的次数>1),只在第一个瓶颈层stride为对应的s,其他重复的瓶颈层stride均为1

2) 当n>1时,只在第一个瓶颈层特征维度为c,其他时候channel不变。

3.MobileNetV2实现

3.1 BottleNeck

class BottleNeck(nn.Module):
    def __init__(self, in_channels, out_channels, stride, t):
        super().__init__()

        self.conv = nn.Sequential(

            nn.Conv2d(in_channels, in_channels*t, 1, bias=False),
            nn.BatchNorm2d(in_channels*t),
            nn.ReLU6(inplace=True),

            nn.Conv2d(in_channels*t, in_channels*t, 3, stride=stride, padding=1, groups=in_channels*t, bias=False),
            nn.BatchNorm2d(in_channels*t),
            nn.ReLU6(inplace=True),

            nn.Conv2d(in_channels*t, out_channels, 1, bias=False),
            nn.BatchNorm2d(out_channels)
        )

        self.shortcut = nn.Sequential()
        if stride == 1 and in_channels != out_channels:
            self.shortcut = nn.Sequential(
                nn.Conv2d(in_channels, out_channels, 1, bias=False),
                nn.BatchNorm2d(out_channels)
            )
            
        self.stride = stride

    def forward(self, x):
        out = self.conv(x)

        if self.stride == 1:
            out += self.shortcut(x)

        return out

3.2 MobileNetV2整体实现

class MobileNetV2(nn.Module):
    def __init__(self, class_num=settings.CLASSES_NUM):
        super().__init__()

        self.conv1 = nn.Sequential(
            nn.Conv2d(3, 32, 3, stride=2, padding=1, bias=False),
            nn.BatchNorm2d(32),
            nn.ReLU6(inplace=True)
        )

        self.bottleneck1 = self.make_layer(1, 32, 16, 1, 1)
        self.bottleneck2 = self.make_layer(2, 16, 24, 2, 6)
        self.bottleneck3 = self.make_layer(3, 24, 32, 2, 6)
        self.bottleneck4 = self.make_layer(4, 32, 64, 2, 6)
        self.bottleneck5 = self.make_layer(3, 64, 96, 1, 6)
        self.bottleneck6 = self.make_layer(3, 96, 160, 2, 6)
        self.bottleneck7 = self.make_layer(1, 160, 320, 1, 6)

        self.conv2 = nn.Sequential(
            nn.Conv2d(320, 1280, 1, bias=False),
            nn.BatchNorm2d(1280),
            nn.ReLU6(inplace=True)
        )

        self.avgpool = nn.AdaptiveAvgPool2d(1)

        self.conv3 = nn.Conv2d(1280, class_num, 1, bias=False)

    def make_layer(self, repeat, in_channels, out_channels, stride, t):

        layers = []

        layers.append(BottleNeck(in_channels, out_channels, stride, t))

        while repeat-1:
            layers.append(BottleNeck(out_channels, out_channels, 1, t))
            repeat -= 1

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bottleneck1(x)
        x = self.bottleneck2(x)
        x = self.bottleneck3(x)
        x = self.bottleneck4(x)
        x = self.bottleneck5(x)
        x = self.bottleneck6(x)
        x = self.bottleneck7(x)
        x = self.conv2(x)
        x = self.avgpool(x)
        x = self.conv3(x)
        x = x.flatten(1)

        return x

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值