一、线性神经网络
1、线性模型
权重决定了每个特征对我们预测值的影响。偏置是指当所有特征都取值为0时,预测值应该为多少。
线性模型可以看做是单层神经网络,只有一个输入层和一个输出层
2、损失函数
损失函数能够量化目标的实际值与预测值之间的差距。通常我们会选择非负数作为损失,且数值越小表示损失越小,完美预测时的损失为0。回归问题中最常用的损失函数是平方误差函数。当样本ii的预测值为y^(i)y^(i),其相应的真实标签为y(i)y(i)时,平方误差可以定义为以下公式:
在训练模型时,寻找一组参数(w∗,b∗w∗,b∗),这组参数能最小化在所有训练样本上的总损失。
3、softmax回归
softmax回归本质上是分类问题:回归估计一个连续值,分类预测一个离散类别
但是,一般的分类问题并不与类别之间的自然顺序有关。表示分类数据的简单方法为:独热