第二周作业:多层感知机

一、线性神经网络

     1、线性模型

权重决定了每个特征对我们预测值的影响。偏置是指当所有特征都取值为0时,预测值应该为多少。

 线性模型可以看做是单层神经网络,只有一个输入层和一个输出层

2、损失函数

损失函数能够量化目标的实际值与预测值之间的差距。通常我们会选择非负数作为损失,且数值越小表示损失越小,完美预测时的损失为0。回归问题中最常用的损失函数是平方误差函数。当样本ii的预测值为y^(i)y^(i),其相应的真实标签为y(i)y(i)时,平方误差可以定义为以下公式:

在训练模型时,寻找一组参数(w∗,b∗w∗,b∗),这组参数能最小化在所有训练样本上的总损失。

 3、softmax回归

 softmax回归本质上是分类问题:回归估计一个连续值,分类预测一个离散类别

 但是,一般的分类问题并不与类别之间的自然顺序有关。表示分类数据的简单方法为:独热

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值