[pytorch] detr源码浅析

为之后SAM的代码分析做铺垫

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

1. backbone部分

  • detr.py中的DETR class
class DETR(nn.Module):
	def __init__(self, backbone, transformer, num_classes, num_queries, aux_loss=False):
		...
	def forward(self, samples: NestedTensor):
		features, pos = self.backbone(samples)
        # 第一步,从图像提取特征
        # 返回值:特征图,pos位置编码(当前得到的特征图编码.不是对原始图像)
        # 跳到backbone - backbone.py里的Joiner函数
  • backbone.py 中的 Joiner class
class Joiner(nn.Sequential):
    def __init__(self, backbone, position_embedding):
        super().__init__(backbone, position_embedding)

    def forward(self, tensor_list: NestedTensor):
        # print(tensor_list.tensor.shape)
        xs = self[0](tensor_list)
        # 输入图像经过resnet
        # 得到特征图
        out: List[NestedTensor] = []
        pos = []
        for name, x in xs.items():
            out.append(x)
            pos.append(self[1](x).to(x.tensors.dtype))
            # 跳到position encoding.py

        return out, pos
  • position encoding.py
    第一种:Attention Is All You Need中的正余弦编码方式,不用学习,默认方法
    在这里插入图片描述
class PositionEmbeddingSine(nn.Module):
    """
    This is a more standard version of the position embedding, very similar to the one
    used by the Attention is all you need paper, generalized to work on images.
    """
    def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
        super().__init__()
        self.num_pos_feats = num_pos_feats
        self.temperature = temperature # 经验值
        self.normalize = normalize
        if scale is not None and normalize is False:
            raise ValueError("normalize should be True if scale is passed")
        if scale is None:
            scale = 2 * math.pi
        self.scale = scale

    def forward(self, tensor_list: NestedTensor):
        x = tensor_list.tensors
        # 输入特征图大小 batch, c, h, w    resnet50 c = 2048
        mask = tensor_list.mask
        # mask 表示实际的特征true  还是padding出来的false
        # 大小 batch,h,w
        assert mask is not None
        not_mask = ~mask
        y_embed = not_mask.cumsum(1, dtype=torch.float32) # 行方向累加 最后一位为累加的得到的最大值
        x_embed = not_mask.cumsum(2, dtype=torch.float32) # 列方向累加 最后一位为累加的得到的最大值
        if self.normalize:
            eps = 1e-6
            # 归一化
            y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
            x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale

        dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
        dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)

        pos_x = x_embed[:, :, :, None] / dim_t
        pos_y = y_embed[:, :, :, None] / dim_t
        # 算奇数维度或者偶数维度 公式不一样
        pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
        pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) 
        # 前一半是pos_x 后一半是pos_y
        return pos

第二种:可学习的位置编码

class PositionEmbeddingLearned(nn.Module):
    """
    Absolute pos embedding, learned.
    """
    def __init__(self, num_pos_feats=256):
        super().__init__()
        # 行和列进行编码
        self.row_embed = nn.Embedding(50, num_pos_feats)  
        self.col_embed = nn.Embedding(50, num_pos_feats)
        # 50经验值
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.uniform_(self.row_embed.weight)
        nn.init.uniform_(self.col_embed.weight)

    def forward(self, tensor_list: NestedTensor):
        x = tensor_list.tensors
        h, w = x.shape[-2:]
        i = torch.arange(w, device=x.device)
        j = torch.arange(h, device=x.device)
        x_emb = self.col_embed(i)
        y_emb = self.row_embed(j)
        pos = torch.cat([
            x_emb.unsqueeze(0).repeat(h, 1, 1),
            y_emb.unsqueeze(1).repeat(1, w, 1),
        ], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1)
        return pos

2. encoder部分

  • detr.py中的DETR class
class DETR(nn.Module):
	def __init__(self, backbone, transformer, num_classes, num_queries, aux_loss=False):
		self.input_proj = nn.Conv2d(backbone.num_channels, hidden_dim, kernel_size=1)
		...
	def forward(self, samples: NestedTensor):
		features, pos = self.backbone(samples)
		src, mask = features[-1].decompose()
		# features和pos保存的都是cnn中每个block的结果,用的时候取最后一个block的结果
		# features大小 batch, c, h, w    resnet50 c = 2048
		# mask 大小 batch, h, w 是否padding
        assert mask is not None
        hs = self.transformer(self.input_proj(src), mask, self.query_embed.weight, pos[-1])[0]
        # self.input_proj降维 cnn得到的特征图维度2048太大了把它降低到256
        # 跳到 transformer.py中的Transformer class
  • transformer.py中的Transformer class
class Transformer(nn.Module):

    def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
                 num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
                 activation="relu", normalize_before=False,
                 return_intermediate_dec=False):
        super().__init__()

        encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
                                                dropout, activation, normalize_before)
        encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
        self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)

        decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward,
                                                dropout, activation, normalize_before)
        decoder_norm = nn.LayerNorm(d_model)
        self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm,
                                          return_intermediate=return_intermediate_dec)

        self._reset_parameters()

        self.d_model = d_model
        self.nhead = nhead

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, src, mask, query_embed, pos_embed):
        # flatten NxCxHxW to HWxNxC
        bs, c, h, w = src.shape
        src = src.flatten(2).permute(2, 0, 1) # NxCxHxW to HWxNxC
        # N是batchsize大小 把特征图长×宽得到token个数
        # 输出大小 [token个数,batch size,token 长度]
        pos_embed = pos_embed.flatten(2).permute(2, 0, 1) # NxCxHxW to HWxNxC
        query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
        # query_embed 在decoder中用到,大小为[100,batch size,token 长度]
        mask = mask.flatten(1) # mask大小 [token个数,batch size]

        tgt = torch.zeros_like(query_embed)
        # tgt在decoder中用到
        memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
        # 跳到  transformer.py中的TransformerEncoderLayer class
        # encoder的输出大小 [token个数,batch size,token长度]
        hs = self.decoder(tgt, memory, memory_key_padding_mask=mask,
                          pos=pos_embed, query_pos=query_embed)
        return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w)
  • transformer.py中的TransformerEncoderLayer class
class TransformerEncoderLayer(nn.Module):

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
                 activation="relu", normalize_before=False):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self,
                     src,
                     src_mask: Optional[Tensor] = None,
                     src_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None):
        q = k = self.with_pos_embed(src, pos) # 只有K和Q 加入了位置编码
        # q k 的大小都为 [token个数,batch size,token长度]
        src2 = self.self_attn(q, k, value=src, attn_mask=src_mask,
                              key_padding_mask=src_key_padding_mask)[0]
        # pytorch自带函数
        # src_mask 是nlp中防止透题用的,这里不用
        # src_key_padding_mask padding为true的不计算
        # 返回值 [新的特征图,权重项] 第二项不需要
        src = src + self.dropout1(src2)
        src = self.norm1(src)
        src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
        src = src + self.dropout2(src2)
        src = self.norm2(src)
        return src
  • transformer.py中的TransformerEncoder class
    将TransformerEncoderLayer 重复多次
class TransformerEncoder(nn.Module):

    def __init__(self, encoder_layer, num_layers, norm=None):
        super().__init__()
        self.layers = _get_clones(encoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm

    def forward(self, src,
                mask: Optional[Tensor] = None,
                src_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None):
        output = src

        for layer in self.layers:
            output = layer(output, src_mask=mask,
                           src_key_padding_mask=src_key_padding_mask, pos=pos)

        if self.norm is not None:
            output = self.norm(output)

        return output

3. decoder部分

在这里插入图片描述
detr要学习的核心 100个queries向量tgt 大小[100,batch size,token长度]
第一次初始值都为0
最终输出的100个queries最后预测框
无论输入为什么,都输出100个框

  • transformer.py中的Transformer class
class Transformer(nn.Module):

    def __init__(self, d_model=512, nhead=8, num_encoder_layers=6,
                 num_decoder_layers=6, dim_feedforward=2048, dropout=0.1,
                 activation="relu", normalize_before=False,
                 return_intermediate_dec=False):
        super().__init__()

        encoder_layer = TransformerEncoderLayer(d_model, nhead, dim_feedforward,
                                                dropout, activation, normalize_before)
        encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
        self.encoder = TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)

        decoder_layer = TransformerDecoderLayer(d_model, nhead, dim_feedforward,
                                                dropout, activation, normalize_before)
        decoder_norm = nn.LayerNorm(d_model)
        self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm,
                                          return_intermediate=return_intermediate_dec)

        self._reset_parameters()

        self.d_model = d_model
        self.nhead = nhead

    def _reset_parameters(self):
        for p in self.parameters():
            if p.dim() > 1:
                nn.init.xavier_uniform_(p)

    def forward(self, src, mask, query_embed, pos_embed):
        # flatten NxCxHxW to HWxNxC
        bs, c, h, w = src.shape
        src = src.flatten(2).permute(2, 0, 1) # NxCxHxW to HWxNxC
        # N是batchsize大小 把特征图长×宽得到token个数
        # 输出大小 [token个数,batch size,token 长度]
        pos_embed = pos_embed.flatten(2).permute(2, 0, 1) # NxCxHxW to HWxNxC
        query_embed = query_embed.unsqueeze(1).repeat(1, bs, 1)
        # query_embed 在decoder中用到,大小为[100,batch size,token 长度]
        mask = mask.flatten(1) # mask大小 [token个数,batch size]

        tgt = torch.zeros_like(query_embed) # 一开始初始化为0
        # tgt在decoder中用到
        memory = self.encoder(src, src_key_padding_mask=mask, pos=pos_embed)
        hs = self.decoder(tgt, memory, memory_key_padding_mask=mask,
                          pos=pos_embed, query_pos=query_embed)
        # 跳到  transformer.py中的TransformerDecoderLayer class
        return hs.transpose(1, 2), memory.permute(1, 2, 0).view(bs, c, h, w)
  • transformer.py中的TransformerDecoderLayer class
class TransformerDecoderLayer(nn.Module):

    def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1,
                 activation="relu", normalize_before=False):
        super().__init__()
        self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        self.multihead_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
        # Implementation of Feedforward model
        self.linear1 = nn.Linear(d_model, dim_feedforward)
        self.dropout = nn.Dropout(dropout)
        self.linear2 = nn.Linear(dim_feedforward, d_model)

        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout1 = nn.Dropout(dropout)
        self.dropout2 = nn.Dropout(dropout)
        self.dropout3 = nn.Dropout(dropout)

        self.activation = _get_activation_fn(activation)
        self.normalize_before = normalize_before

    def with_pos_embed(self, tensor, pos: Optional[Tensor]):
        return tensor if pos is None else tensor + pos

    def forward_post(self, tgt, memory,
                     tgt_mask: Optional[Tensor] = None,
                     memory_mask: Optional[Tensor] = None,
                     tgt_key_padding_mask: Optional[Tensor] = None,
                     memory_key_padding_mask: Optional[Tensor] = None,
                     pos: Optional[Tensor] = None,
                     query_pos: Optional[Tensor] = None):
        q = k = self.with_pos_embed(tgt, query_pos)
        # 大小[100,batch size,token长度]
        tgt2 = self.self_attn(q, k, value=tgt, attn_mask=tgt_mask,
                              key_padding_mask=tgt_key_padding_mask)[0]
        # 先自注意力机制
        # tgt_mask 和 tgt_key_padding_mask 都为None
        tgt = tgt + self.dropout1(tgt2)
        tgt = self.norm1(tgt)
        tgt2 = self.multihead_attn(query=self.with_pos_embed(tgt, query_pos),
                                   key=self.with_pos_embed(memory, pos),
                                   value=memory, attn_mask=memory_mask,
                                   key_padding_mask=memory_key_padding_mask)[0]
        # q 是 100个queries
        # 图像提供k,v 大小[图像token个数,batch size,token 长度]
        tgt = tgt + self.dropout2(tgt2)
        tgt = self.norm2(tgt)
        tgt2 = self.linear2(self.dropout(self.activation(self.linear1(tgt))))
        tgt = tgt + self.dropout3(tgt2)
        tgt = self.norm3(tgt)
        return tgt
  • transformer.py中的TransformerDecoder class
    将TransformerDecoderLayer 重复多次
    tgt 在经过第一层之后就不为0了
class TransformerDecoder(nn.Module):

    def __init__(self, decoder_layer, num_layers, norm=None, return_intermediate=False):
        super().__init__()
        self.layers = _get_clones(decoder_layer, num_layers)
        self.num_layers = num_layers
        self.norm = norm
        self.return_intermediate = return_intermediate

    def forward(self, tgt, memory,
                tgt_mask: Optional[Tensor] = None,
                memory_mask: Optional[Tensor] = None,
                tgt_key_padding_mask: Optional[Tensor] = None,
                memory_key_padding_mask: Optional[Tensor] = None,
                pos: Optional[Tensor] = None,
                query_pos: Optional[Tensor] = None):
        output = tgt

        intermediate = []

        for layer in self.layers:
            output = layer(output, memory, tgt_mask=tgt_mask,
                           memory_mask=memory_mask,
                           tgt_key_padding_mask=tgt_key_padding_mask,
                           memory_key_padding_mask=memory_key_padding_mask,
                           pos=pos, query_pos=query_pos)
            if self.return_intermediate:
                intermediate.append(self.norm(output))

        if self.norm is not None:
            output = self.norm(output)
            if self.return_intermediate:
                intermediate.pop()
                intermediate.append(output)

        if self.return_intermediate:
            return torch.stack(intermediate)

        return output.unsqueeze(0)

4. 输出预测

  • detr.py中的DETR class
    把decoder产生的100个token进行输出
    两个任务:检测(回归4个值)和分类
class DETR(nn.Module):
	def __init__(self, backbone, transformer, num_classes, num_queries, aux_loss=False):
		...
		self.class_embed = nn.Linear(hidden_dim, num_classes + 1)
        self.bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)

	def forward(self, samples: NestedTensor):
		features, pos = self.backbone(samples)
        hs = self.transformer(self.input_proj(src), mask, self.query_embed.weight, pos[-1])[0]
		# decoder输出大小 [batch size,100,token长度]
        outputs_class = self.class_embed(hs) # 分类任务
        outputs_coord = self.bbox_embed(hs).sigmoid() # 检测/回归任务,输出四个值,sigmoid让输出为正数
        out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord[-1]}
  • 3
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值