人工智障:神经网络入门-传统感知模型(McCulloch-Pitts与Rosenblatt感知模型)

本文介绍了神经网络的基础,从McCulloch-Pitts模型出发,探讨了如何通过权值调整实现学习。接着介绍了Rosenblatt感知模型,解释了在处理负数输入和过大学习率问题上的改进,并概述了感知器的收敛定理证明。文章旨在帮助读者深入理解神经网络的初步工作原理。
摘要由CSDN通过智能技术生成

有道云笔记持续更新:

文档:1.函数感知器.note
链接:http://note.youdao.com/noteshare?id=1b26a31ef01fac6ecf0b147f66511807&sub=32BBDE8AD2384ED79A62B1A94E57F36C

McCulloch-Pitts模型

        

 神经元细胞图

        输入信号通过树突(自变量)进入神经元,再通过轴突(因变量)输出结果。如果输入只有一个,那么对应的输出也只有一个,也就是一元函数。但是往往一个问题需要考虑多个方面,我们可以用下面的图来表示多个方面的问题;

McCullon-Pitts模型示意图

        可以将直觉看作一个多元函数,即 Y = X1*W1 + X2*W2 + X3*W3 + ... + Xn*Wn ;

   

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值