如何计算卷积神经网络参数

如何计算卷积神经网络参数

卷积层(Conv Layer)的输出张量的大小

  • W1、H1、D1——输入图像的宽、高、深度(通道数)
  • W2、H2、D2——输出卷积后特征图的宽、高、深度(通道数)
  • P——padding,即图像填充零的厚度
  • S——stride,步长
  • F——卷积核的尺寸
  • K——卷积核的个数
    W2=W1F+2PS+1 W2 = { {W1 - F + 2P} \above{1pt} S} + 1
    H2=H1F+2PS+1 H2 = { {H1 - F + 2P} \above{1pt} S} + 1
    D2=K D2 = K

池化层(MaxPool Layer)的输出张量的大小

  • W1、H1、D1——输入图像的宽、高、深度(通道数)
  • W2、H2、D2——输出卷积后特征图的宽、高、深度(通道数
  • S——stride,步长
  • F——卷积核的尺寸
    注:不同于卷积层,池化层的输出通道数不改变
    W2=W1FS+1 W2 = { {W1 - F} \above{1pt} S} + 1
    H2=H1FS+1 H2 = { {H1 - F} \above{1pt} S} + 1
    D2=D1 D2 = D1

学习资料:
http://cs231n.stanford.edu/slides/2016/winter1516_lecture7.pdf

发布了37 篇原创文章 · 获赞 13 · 访问量 3万+
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览