整型规划的凸松弛(Convex Relaxation in Integer Programming)

当面对整型组合优化问题,尤其是寻找最小点时,传统的求导方法不再适用,而直接使用排序可能导致NP问题。为解决这一困境,可以将问题的定义域从整型松弛到实值,保证目标函数不增。通过分析方法如梯度下降处理松弛后的问题,但需防止陷入局部最小。确保目标函数在定义域上的凸性可以避免局部最小,从而得到接近最优解的实数值,最后再进行整化。
摘要由CSDN通过智能技术生成

先来看下整型组合优化问题,对于(图一)中的寻找最小点(红点)问题,用求导的方法不可取,用排序的方法就是NP问题,无法在多项式时间内找到最优解。

(图一)

 

遇到这种情况,可以采用松弛的方式来处理,首先把问题定义域X的范围从整型松弛到实值范围内,而且目标函数在整型定义域上小于或者等于原目标函数,如图二所示:

(图二)

 

此时可以用分析的方法(比如梯度下降等)来处理,但是仍然有个问题就是有可能陷入局部最小,解决陷入局部最小的办法就是让目标函数在定义域上是凸的,这样就不会陷入局部最小了(感觉像说了废话一样),如(图三)所示:

(图三)

这样就可以直接通过分析的方法求出逼近解,然后化整就行了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值