
最优化
菜且凶残_2017
这个作者很懒,什么都没留下…
展开
-
强化学习7——基于环境模型的RL方法
观周博雷老师课程有感何为模型状态转移概率:状态价值奖励:我们通常假设状态转移和价值之间是独立的如何学到模型通过环境交互,behavior policy采样一系列状态转移{S1,A1,R2,…,ST},使用监督的办法学习状态转移和价值函数。模型的种类Table Lookup ModelLinear Expectation ModelLinear Gaussian ModelGaussian Process ModelDeep Belief Network Model …T原创 2020-12-29 10:22:39 · 946 阅读 · 0 评论 -
线性规划总结3——单纯形法和对偶单纯形法
单纯形法1)利用单纯形法原理, 求解原问题2)求解过程中始终保持常数列≥0(保持原问题可行),而检验数由有正逐渐变为全部≤0(对偶问题由不可行变为可行)对偶单纯形法1)利用对偶原理, 求解原问题 (不是求解对偶问题!)2)求解中始终保持检验数全部≤0 (对偶问题可行),而常数列由有负逐渐变为全部≥0 (原问题由不可行变为可行)...原创 2020-12-15 11:12:46 · 6803 阅读 · 0 评论 -
最优化——线性规划总结2(单纯形法问题总结,检验数为0和退化)
求进基之后的基本可行解在选择保留进基变量所在行的过程中不用考虑进基变量的系数不是正数的行假定已知基本可行解 X^\hat{X}X^ 的表示式为XB+P^j(m+1)xj(m+1)+⋯+P^j(n)xj(n)=X^BX_{B}+\hat{P}_{j(m+1)} x_{j(m+1)}+\cdots+\hat{P}_{j(n)} x_{j(n)}=\hat{X}_{B}XB+P^j(m+1)xj(m+1)+⋯+P^j(n)xj(n)=X^B任取 m+1≤t≤n,m+1 \leq t \le原创 2020-12-12 21:54:17 · 8262 阅读 · 0 评论 -
最优化——线性规划总结1(线性规划标准型,规范型,顶点)
线性规划的形式标准型规范型线性规划的求解思路前提条件线性规划:凸优化(凸集上的凸函数的优化)线性规划的可行集是凸集,优化函数是凸函数(仿射函数嘛)总有顶点是最优解,所有顶点组成的集合总是有限集,所以可以在顶点集中找到最优解。主要思路根据前提条件来看,我们求解线性规划的思路:找到所有的顶点,在顶点中找到最优的那个,就是最优解。相当于缩小了搜索范围。怎么搞首先计算顶点:顶点是改点所有起作用约束构成的线性方程组的唯一解。因为所有的线性规划形式都能转换成标准型,所以这里只考虑标准型的原创 2020-12-10 23:19:29 · 5893 阅读 · 0 评论 -
最优化——退化和某个非基变量检验数为零
文章目录退化和某个非基变量检验数为零退化问题退化问题的本质某个非基变量检验数为零退化和某个非基变量检验数为零退化问题 基本可行解的基变量数值等于0。退化问题的本质 多个可行基阵对应于一个基本可行解。某个非基变量检验数为零 对于求max的线性规划问题,如果所有检验数均满足 则说明已经得到最优解, 若此时某非基变量的检验数为零 ,则说明该优化问题有无穷多最优解。...原创 2020-12-10 17:47:55 · 7304 阅读 · 0 评论 -
最优化——对偶问题的性质(弱对偶性,强对偶性),对偶问题形式的书写(对偶规则)
对偶性质弱对偶性原对偶问题任何可行解的目标值都是另一问题最优目标值的界。(推论:原对偶问题目标值相等的一对可行解是各自的最优解)强对偶性原对偶问题只要有一个有最优解,另一个就有最优解,并且最优目标值相等。对偶问题解之间的关系线性规划与其对偶规则的关系互补松弛定理 原问题 maxCTX\max C^{T} XmaxCTX 对偶问题 minb⃗TY\min \vec{b}^{T} YminbTY s.t. AX≤b⃗ s原创 2020-12-10 16:15:35 · 6192 阅读 · 0 评论 -
最优化——分析线性规划的对偶问题的等价性
文章目录最优化—对偶原理与对偶单纯形法线性规划的对偶原理原问题为何与对偶问题等价前提1前提2证明等价性最优化—对偶原理与对偶单纯形法线性规划的对偶原理对于标准线性规划问题:maxc1x1+c2x2+⋯+cnxn s.t. P1x1+P2x2+⋯+Pnxn=b⃗xj≥0,∀1≤j≤n\begin{array}{c}\max c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \\\text { s.t. } \quad P_{1} x_{1原创 2020-12-09 20:21:09 · 898 阅读 · 0 评论 -
最优化——单纯形法,单纯形表的求取
最优化——单纯形法一般性线性规划标准型为对象总结其基本步骤maxz s.t. P1x1+P2x2+⋯+Pnxn=b⃗−−−(1)c1x1+c2x2+⋯+cnxn=z−−−(2)xj≥0,∀1≤j≤n\begin{array}{ll}\max & z \\\text { s.t. } & P_{1} x_{1}+P_{2} x_{2}+\cdots+P_{n} x_{n}=\vec{b}---(1) \\& c_{1} x_{1}+c_{2} x_{2原创 2020-12-08 20:37:12 · 4272 阅读 · 0 评论 -
最优化——线性规划中最大规划和最小规划之间的转换
最优化——线性规划中最大规划和最小规划之间的转换max∑j=1ncjxj⇒−(min∑j=1n−cjxj)X=(xi...xn)T∈Ω\max \sum_{j=1}^{n} c_{j} x_{j} \quad\quad\quad\quad\Rightarrow\quad\quad\quad\quad -(\min \sum_{j=1}^{n} -c_{j} x_{j}) \\X=(x_i...x_n)^T \in \Omegamaxj=1∑ncjxj⇒−(minj=1∑n−cjxj)原创 2020-12-08 11:58:59 · 4566 阅读 · 0 评论 -
最优化——单纯形法学习心得
单纯形法基本可行解的表示式(教材中称为典式) :基变量只出现在一个等式的等式约束[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-UHbJsxlP-1607322076772)(最优化—线性规划.assets/image-20201207112757323.png)]在选择保留进基变量所在行的过程中不用考虑进基变量的系数不是正数的行 ,选择进基变量系数非负的行保留进基变量思路:①假设已知一个基本可行解➡️②选择能够使目标函数改进的进基变量➡️③判断目前的基本可行解是否最原创 2020-12-07 14:22:52 · 1539 阅读 · 0 评论