泛函分析2——Normed Linear Spaces

Preface

参考摘录于FUNCTIONAL ANALYSIS NOTES——Mr. Andrew Pinchuck

FUNCTIONAL ANALYSIS NOTES

2 Normed Linear Spaces

2.1 Definition

A norm on a linear space X X X is a real-valued function ∥ ⋅ ∥ : X → R \|\cdot\|: X \rightarrow \mathbb{R} :XR which satisfies the following properties:
For all x , y ∈ X x, y \in X x,yX and λ ∈ F \lambda \in \mathbb{F} λF
N1. ∥ x ∥ ≥ 0 \|x\| \geq 0 x0;
N2. ∥ x ∥ = 0 ⟺ x = 0 \|x\|=0 \Longleftrightarrow x=0 x=0x=0
N3. ∥ λ x ∥ = ∣ λ ∣ ∥ x ∥ \|\lambda x\|=|\lambda|\|x\| λx=λx
N4. ∥ x + y ∥ ≤ ∥ x ∥ + ∥ y ∥ \|x+y\| \leq\|x\|+\|y\| x+yx+y (Triangle Inequality).
A normed linear space is a pair ( X , ∥ ⋅ ∥ ) , (X,\|\cdot\|), (X,), where X X X is a linear space and ∥ ⋅ ∥ \|\cdot\| a norm on X . X . X. The number ∥ x ∥ \|x\| x is called the norm or length of x x x

Unless there is some danger of confusion, we shall identify the normed linear space ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) with the underlying linear space X X X.

Examples

[1] Let X = F X=\mathbb{F} X=F. For each x ∈ X x \in X xX, define ∥ x ∥ = ∣ x ∣ \|x\|=|x| x=x, then ( X , ∥ ⋅ ∥ X,\|\cdot\| X,)is a normed linear spaces

[2] Let n n n be a natural number and X = F n X=\mathbb{F}^{n} X=Fn. For each x = ( x 1 , x 2 , … , x n ) ∈ X , x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in X, x=(x1,x2,,xn)X, define
∥ x ∥ p = ( ∑ i = 1 n ∣ x i ∣ p ) 1 p ,  for  1 ≤ p < ∞ ,  and  ∥ x ∥ ∞ = max ⁡ 1 ≤ i ≤ n ∣ x i ∣ \begin{array}{l} \|x\|_{p}=\left(\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}}, \text { for } 1 \leq p<\infty, \text { and } \\ \|x\|_{\infty}=\max _{1 \leq i \leq n}\left|x_{i}\right| \end{array} xp=(i=1nxip)p1, for 1p<, and x=max1inxi
Then ( X , ∥ ⋅ ∥ p ) \left(X,\|\cdot\|_{p}\right) (X,p) and ( X , ∥ ⋅ ∥ ∞ ) \left(X,\|\cdot\|_{\infty}\right) (X,) are normed linear spaces.

[3] Let X = B [ a , b ] X=\mathcal{B}[a, b] X=B[a,b] be the set of all bounded real-valued functions on [ a , b ] [a, b] [a,b]. For each x ∈ X x \in X xX, define
∥ x ∥ ∞ = sup ⁡ a ≤ t ≤ b ∣ x ( t ) ∣ \|x\|_{\infty}=\sup _{a \leq t \leq b}|x(t)| x=atbsupx(t)
Then ( X , ∥ ⋅ ∥ ∞ ) \left(X,\|\cdot\|_{\infty}\right) (X,) is a normed linear space.

[4] Let X = C [ a , b ] = { x : [ a , b ] → F ∣ x X=\mathcal{C}[a, b]=\{x:[a, b] \rightarrow \mathbb{F} \mid x X=C[a,b]={x:[a,b]Fx is continuous }. For each x ∈ X x \in X xX, define
$$
\begin{aligned}

|x|_{\infty} &=\sup _{a \leq t \leq b}|x(t)| \

|x|{2} &=\left(\int{a}{b}|x(t)|{2} d t\right)^{\frac{1}{2}}

\end{aligned}
$$
Then ( X , ∥ ⋅ ∥ ∞ ) \left(X,\|\cdot\|_{\infty}\right) (X,) and ( X , ∥ ⋅ ∥ 2 ) \left(X,\|\cdot\|_{2}\right) (X,2) are normed linear spaces.

[5] Let X = ℓ p , 1 ≤ p < ∞ X=\ell_{p}, 1 \leq p<\infty X=p,1p<. For each x = ( x i ) 1 ∞ ∈ X , x=\left(x_{i}\right)_{1}^{\infty} \in X, x=(xi)1X, define
∥ x ∥ p = ( ∑ i ∈ N ∣ x i ∣ p ) 1 p \|x\|_{p}=\left(\sum_{i \in \mathbb{N}}\left|x_{i}\right|^{p}\right)^{\frac{1}{p}} xp=(iNxip)p1
Then ( X , ∥ ⋅ ∥ p ) \left(X,\|\cdot\|_{p}\right) (X,p) is a normed linear space.

[6] Let X = ℓ ∞ , c X=\ell_{\infty}, c X=,c or c 0 . c_{0} . c0. For each x = ( x i ) 1 ∞ ∈ X , x=\left(x_{i}\right)_{1}^{\infty} \in X, x=(xi)1X, define
∥ x ∥ = ∥ x ∥ ∞ = sup ⁡ i ∈ N ∣ x i ∣ \|x\|=\|x\|_{\infty}=\sup _{i \in \mathbb{N}}\left|x_{i}\right| x=x=iNsupxi
Then X X X is a normed linear space.

[7] Let X = L ( C n ) X=\mathcal{L}\left(\mathbb{C}^{n}\right) X=L(Cn) be the linear space of all n × n n \times n n×n complex matrices. For A ∈ L ( C n ) , A \in \mathcal{L}\left(\mathbb{C}^{n}\right), AL(Cn), let τ ( A ) = ∑ i = 1 n ( A ) i i \tau(A)=\sum_{i=1}^{n}(A)_{i i} τ(A)=i=1n(A)ii be the trace of A . A . A. For A ∈ L ( C n ) , A \in \mathcal{L}\left(\mathbb{C}^{n}\right), AL(Cn), define
∥ A ∥ 2 = τ ( A ∗ A ) = ∑ i = 1 n ∑ k = 1 n ( A ) k i ‾ ( A ) k i = ∑ i = 1 n ∑ k = 1 n ∣ ( A ) k i ∣ 2 \|A\|_{2}=\sqrt{\tau\left(A^{*} A\right)}=\sqrt{\sum_{i=1}^{n} \sum_{k=1}^{n} \overline{(A)_{k i}}(A)_{k i}}=\sqrt{\sum_{i=1}^{n} \sum_{k=1}^{n}\left|(A)_{k i}\right|^{2}} A2=τ(AA) =i=1nk=1n(A)ki(A)ki =i=1nk=1n(A)ki2
where A ∗ A^{*} A is the conjugate transpose of the matrix A A A.

Notation

Let a a a be an element of a normed linear space ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) and r > 0. r>0 . r>0.

B ( a , r ) = { x ∈ X ∣ ∥ x − a ∥ < r } B(a, r)=\{x \in X \mid\|x-a\|<r\} B(a,r)={xXxa<r} (Open ball with centre a a a and radius r ) r) r)

B [ a , r ] = { x ∈ X ∣ ∥ x − a ∥ ≤ r } B[a, r]=\{x \in X \mid\|x-a\| \leq r\} B[a,r]={xXxar} (Closed ball with centre a a a and radius r ) r) r)

S ( a , r ) = { x ∈ X ∣ ∥ x − a ∥ = r } S(a, r)=\{x \in X \mid\|x-a\|=r\} S(a,r)={xXxa=r} (Sphere with centre a a a and radius r ) r) r)

Equivalent Norms
Definiton

Let ∥ ⋅ ∥ \|\cdot\| and ∥ ⋅ ∥ 0 \|\cdot\|_{0} 0 be two different norms defined on the same linear space X . X . X. We say that ∥ ⋅ ∥ \|\cdot\| is equivalent to ∥ ⋅ ∥ 0 \|\cdot\|_{0} 0 if there are positive numbers α \alpha α and β \beta β such that
α ∥ x ∥ ≤ ∥ x ∥ 0 ≤ β ∥ x ∥ ,  for all  x ∈ X \alpha\|x\| \leq\|x\|_{0} \leq \beta\|x\|, \text { for all } x \in X αxx0βx, for all xX

example

all norms on a finite-dimensional normed linear space are equivalent.

2.2 Open and Closed Sets

Definition

[1] A subset S S S of a normed linear space ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) is open if for each s ∈ S s \in S sS there is an ϵ > 0 \epsilon>0 ϵ>0 such that B ( s , ϵ ) ⊂ S B(s, \epsilon) \subset S B(s,ϵ)S

[2] A subset F F F of a normed linear space ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) is closed if its complement X \ F X \backslash F X\F is open.

[3] Let S S S be a subset of a normed linear space ( X , ∥ ⋅ ∥ ) . (X,\|\cdot\|) . (X,). We define the closure of S , S, S, denoted by S ˉ , \bar{S}, Sˉ, to be the intersection of all closed sets containing S S S

It is easy to show that S S S is closed if and only if S = S ˉ S=\bar{S} S=Sˉ.

[4] metric on a set X X X is a real-valued function d : X × X → R d: X \times X \rightarrow \mathbb{R} d:X×XR which satisfies the following properties: For all x , y , z ∈ X x, y, z \in X x,y,zX,
M1. d ( x , y ) ≥ 0 d(x, y) \geq 0 d(x,y)0
M2. d ( x , y ) = 0 ⟺ x = y d(x, y)=0 \Longleftrightarrow x=y d(x,y)=0x=y
M3. d ( x , y ) = d ( y , x ) d(x, y)=d(y, x) d(x,y)=d(y,x)
M4. d ( x , z ) ≤ d ( x , y ) + d ( y , z ) d(x, z) \leq d(x, y)+d(y, z) d(x,z)d(x,y)+d(y,z)

Theorem

(a) If ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) is a normed linear space, then
d ( x , y ) = ∥ x − y ∥ d(x, y)=\|x-y\| d(x,y)=xy
defines a metric on X . X . X. Such a metric d d d is said to be induced or generated by the norm ∥ ⋅ ∥ . \|\cdot\| . . Thus, every normed linear space is a metric space, and unless otherwise specified, we shall henceforth regard any normed linear space as a metric space with respect to the metric induced by its norm.
(b) the property of metric d If d d d is a metric on a linear space X X X satisfying the properties: For all x , y , z ∈ X x, y, z \in X x,y,zX and for all λ ∈ F \lambda \in \mathbb{F} λF,
(i) d ( x , y ) = d ( x + z , y + z )  (Translation Invariance)  d(x, y)=d(x+z, y+z) \quad \text { (Translation Invariance) } d(x,y)=d(x+z,y+z) (Translation Invariance) 

​ (ii) d ( λ x , λ y ) = ∣ λ ∣ d ( x , y ) d(\lambda x, \lambda y)=|\lambda| d(x, y) \quad d(λx,λy)=λd(x,y) (Absolute Homogeneity),
then
∥ x ∥ = d ( x , 0 ) \|x\|=d(x, 0) x=d(x,0)
defines a norm on X X X.

2.3 Quotient Norm and Quotient Map

[1] Let M M M be a closed linear subspace of a normed linear space X X X over F \mathbb{F} F. The quotient space X / M X / M X/M is a normed linear space with respect to the norm(Quotient Norm)
∥ [ x ] ∥ : = inf ⁡ y ∈ [ x ] ∥ y ∥ = inf ⁡ m ∈ M ∥ x + m ∥ = inf ⁡ m ∈ M ∥ x − m ∥ = d ( x , M ) ,  where  [ x ] ∈ X / M \|[x]\|:=\inf _{y \in[x]}\|y\|=\inf _{m \in M}\|x+m\|=\inf _{m \in M}\|x-m\|=d(x, M), \text { where }[x] \in X / M [x]:=y[x]infy=mMinfx+m=mMinfxm=d(x,M), where [x]X/M

inf ⁡ m ∈ M ∥ x − m ∥ = d ( x , M ) \inf _{m \in M}\|x-m\|=d(x, M) infmMxm=d(x,M),这个我的理解是,x到m的范数最小,也就是x到M的距离,类比点到直线的距离。

[2] Let M M M be a closed subspace of the normed linear space X X X. The mapping Q M Q_{M} QM from X → X / M X \rightarrow X / M XX/M defined by
Q M ( x ) = x + M , x ∈ X Q_{M}(x)=x+M, \quad x \in X QM(x)=x+M,xX
is called the quotient map (or natural embedding) of X X X onto X / M X / M X/M.

2.4 Completeness of Normed Linear Spaces

Definition

Let ( x n ) n = 1 ∞ \left(x_{n}\right)_{n=1}^{\infty} (xn)n=1 be a sequence in a normed linear space ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,).

converge of normed linear space sequence

(a) ( x n ) n = 1 ∞ \left(x_{n}\right)_{n=1}^{\infty} (xn)n=1 is said to converge to x x x if given ϵ > 0 \epsilon>0 ϵ>0 there exists a natural number N = N ( ϵ ) N=N(\epsilon) N=N(ϵ) such that
∥ x n − x ∥ < ϵ  for all  n ≥ N \left\|x_{n}-x\right\|<\epsilon \text { for all } n \geq N xnx<ϵ for all nN
Equivalently, ( x n ) n = 1 ∞ \left(x_{n}\right)_{n=1}^{\infty} (xn)n=1 converges to x x x if
lim ⁡ n → ∞ ∥ x n − x ∥ = 0 \lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|=0 nlimxnx=0
If this is the case, we shall write
x n → x  or  lim ⁡ n → ∞ x n = x x_{n} \rightarrow x \text { or } \lim _{n \rightarrow \infty} x_{n}=x xnx or nlimxn=x
Convergence in the norm is called norm convergence or strong convergence.

Cauchy sequence of normed linear space

(b) ( x n ) n = 1 ∞ \left(x_{n}\right)_{n=1}^{\infty} (xn)n=1 is called a Cauchy sequence if given ϵ > 0 \epsilon>0 ϵ>0 there exists a natural number N = N ( ϵ ) N=N(\epsilon) N=N(ϵ) such that
∥ x n − x m ∥ < ϵ  for all  n , m ≥ N \left\|x_{n}-x_{m}\right\|<\epsilon \text { for all } n, m \geq N xnxm<ϵ for all n,mN
Equivalently, ( x n ) \left(x_{n}\right) (xn) is Cauchy if
lim ⁡ n , m → ∞ ∥ x n − x m ∥ = 0 \lim _{n, m \rightarrow \infty}\left\|x_{n}-x_{m}\right\|=0 n,mlimxnxm=0

Cauchy sequence,在序列号趋于无穷大的时候,它的值就趋于稳定了。

Lemma
  1. Let C C C be a closed set in a normed linear space ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) over F , \mathbb{F}, F, and let ( x n ) \left(x_{n}\right) (xn) be a sequence contained in C C C such that lim ⁡ n → ∞ x n = x ∈ X . \lim _{n \rightarrow \infty} x_{n}=x \in X . limnxn=xX. Then x ∈ C x \in C xC

    赋范空间中的闭合子集中的一个序列,如果收敛,则极限值一定在这个闭合子集中。

  2. Let X X X be a normed linear space and A A A a nonempty subset of X . X . X.
    [ 1 ] ∣ d ( x , A ) − d ( y , A ) ∣ ≤ ∥ x − y ∥ [1]|d(x, A)-d(y, A)| \leq\|x-y\| [1]d(x,A)d(y,A)xy for all x , y ∈ X x, y \in X x,yX
    [ 2 ] ∣ ∥ x ∥ − ∥ y ∥ ∣ ≤ ∥ x − y ∥ [2]|\|x\|-\|y\|| \leq\|x-y\| [2]xyxy for all x , y ∈ X x, y \in X x,yX
    [3] If x n → x , x_{n} \rightarrow x, xnx, then ∥ x n ∥ → ∥ x ∥ \left\|x_{n}\right\| \rightarrow\|x\| xnx
    [4] If x n → x x_{n} \rightarrow x xnx and y n → y , y_{n} \rightarrow y, yny, then x n + y n → x + y x_{n}+y_{n} \rightarrow x+y xn+ynx+y
    [5] If x n → x x_{n} \rightarrow x xnx and α n → α , \alpha_{n} \rightarrow \alpha, αnα, then α n x n → α x \alpha_{n} x_{n} \rightarrow \alpha x αnxnαx
    [6] The closure of a linear subspace in X X X is again a linear subspace;
    [7] Every Cauchy sequence is bounded;
    [8] Every convergent sequence is a Cauchy sequence.

Proposition

Let ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) be a normed linear space over F \mathbb{F} F. A Cauchy sequence in X X X which has a convergent subsequence is convergent.

就是说Cauchy sequence 如果有一个收敛的子序列,那么Cauchy sequence也是收敛的

Completeness

[1] A metric space ( X , d ) (X, d) (X,d) is said to be complete if every Cauchy sequence in X X X converges in X X X.

[2] A normed linear space that is complete with respect to the metric induced by the norm is called a Banach space.

就是说:Banach space是一个metric由norm给出的赋范空间

[3] Theorem Let ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) be a Banach space and let M M M be a linear subspace of X . X . X. Then M M M is complete if and only if the M M M is closed in X X X.

[4] The classical sequence space ℓ p \ell_{p} p is complete.

2.5 Series in Normed Linear Spaces

赋范空间中的级数

Definition

[1] Let ( x n ) \left(x_{n}\right) (xn) be a sequence in a normed linear space ( X , ∥ ⋅ ∥ ) . (X,\|\cdot\|) . (X,). To this sequence we associate another sequence ( s n ) \left(s_{n}\right) (sn) of partial sums, where s n = ∑ k = 1 n x k s_{n}=\sum_{k=1}^{n} x_{k} sn=k=1nxk

[2] Definition Let ( x n ) \left(x_{n}\right) (xn) be a sequence in a normed linear space ( X , ∥ ⋅ ∥ ) . (X,\|\cdot\|) . (X,). If the sequence ( s n ) \left(s_{n}\right) (sn) of partial sums converges to s , s, s, then we say that the series ∑ k = 1 ∞ x k \sum_{k=1}^{\infty} x_{k} k=1xk converges and that its sum is s . s . s. In this case we write ∑ k = 1 ∞ x k = s \sum_{k=1}^{\infty} x_{k}=s k=1xk=s. The series ∑ k = 1 ∞ x k \sum_{k=1}^{\infty} x_{k} k=1xk is said to be absolutely convergent if ∑ k = 1 ∞ ∥ x k ∥ < ∞ . \sum_{k=1}^{\infty}\left\|x_{k}\right\|<\infty . k=1xk<.

用部分和的形式定义赋范空间中的级数收敛

Theorem

[1] A normed linear space ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) is a Banach space if and only if every absolutely convergent series in X X X is convergent.

[2] Let M M M be a closed linear subspace of a Banach space X . X . X. Then the quotient space X / M X / M X/M is a Banach space when equipped with the quotient norm.

2.6 Bounded, Totally Bounded, and Compact Subsets of a Normed Linear Space

Definition

[1] A subset A A A of a normed linear space ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) is bounded if A ⊂ B [ x , r ] A \subset B[x, r] AB[x,r] for some x ∈ X x \in X xX and r > 0 r>0 r>0
It is clear that A A A is bounded if and only if there is a C > 0 C>0 C>0 such that ∥ a ∥ ≤ C \|a\| \leq C aC for all a ∈ A a \in A aA.

[2] Let A A A be a subset of a normed linear space ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) and ϵ > 0. \epsilon>0 . ϵ>0. A subset A ϵ ⊂ X A_{\epsilon} \subset X AϵX is called an ϵ \epsilon ϵ -net for A A A if for each x ∈ A x \in A xA there is an element y ∈ A ϵ y \in A_{\epsilon} yAϵ such that ∥ x − y ∥ < ϵ . \|x-y\|<\epsilon . xy<ϵ. Simply put, A ϵ ⊂ X A_{\epsilon} \subset X AϵX is an ϵ \epsilon ϵ -net for A A A if each element of A A A is within an ϵ \epsilon ϵ distance to some element of A ϵ A_{\epsilon} Aϵ

A ϵ A_\epsilon Aϵ表示这样一个集合,对于A中的每一个元素a你总能在 A ϵ A_\epsilon Aϵ中找到对应的某个元素 a ϵ a_\epsilon aϵ,使得它俩的distance在 ϵ \epsilon ϵ内。

A subset A A A of a normed linear space ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) is totally bounded (or precompact) if for any ϵ > 0 \epsilon>0 ϵ>0 there is a finite ϵ \epsilon ϵ -net F ϵ ⊂ X F_{\epsilon} \subset X FϵX for A A A. That is, there is a finite set F ϵ ⊂ X F_{\epsilon} \subset X FϵX such that
A ⊂ ⋃ x ∈ F ϵ B ( x , ϵ ) A \subset \bigcup_{x \in F_{\epsilon}} B(x, \epsilon) AxFϵB(x,ϵ)

Proposition

[1] Every totally bounded subset of a normed linear space ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) is bounded.

[2] A subset A A A of a normed linear space ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) is totally bounded if and only if for any ϵ > 0 \epsilon>0 ϵ>0 there is a finite set F ϵ ⊂ A F_{\epsilon} \subset A FϵA such that
A ⊂ ⋃ x ∈ F ϵ B ( x , ϵ ) A \subset \bigcup_{x \in F_{\epsilon}} B(x, \epsilon) AxFϵB(x,ϵ)
[3] A normed linear space ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) is sequentially compact if every sequence in X X X has a convergent subsequence.

Theorem

[1] A subset K K K of a normed linear space ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) is totally bounded if and only if every sequence in K K K has a Cauchy subsequence.

[2] A subset of a normed linear space is sequentially compact if and only if it is totally bounded and complete .

Remark

It can be shown that on a metric space, compactness and sequential compactness are equivalent. Thus, it follows, that on a normed linear space, we can use these terms interchangeably.

Corollary

[1] A subset of a Banach space is sequentially compact if and only if it is totally bounded and closed

[2] A sequentially compact subset of a normed linear space is closed and bounded.

[3] A closed subset F of a sequentially compact normed linear space ( X ; ∥ ⋅ ∥ ) (X; \|\cdot\|) X;is sequentially compact.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值