三个数理方程,分离变量法,固有函数法,辅助函数法,达朗贝尔公式(行波法),齐次化原理,基尔霍夫公式,降维法(泊松公式),积分变换法,格林函数法,贝塞尔函数,特征线法
零、三个数理方程及基本概念
弦振动方程(波动方程)
第一类边界条件(狄利克雷):u的值
第二类边界条件(诺依曼):u对x的一阶偏导
第三类边界条件:两个的线性组合
热传导方程(扩散方程)
拉普拉斯方程(齐次)(调和方程),泊松方程(非齐次)
偏微分方程(线性,非线性)
定解问题:
初边值问题(混合问题):泛定方程,初始条件,边界条件
初值问题(柯西问题):泛定方程,初始条件
边值问题:泛定方程,边界条件
第一边值问题(狄利克雷问题):边界函数已知
第二边值问题(诺依曼问题):边界函数的方向导数已知
叠加原理(多个单方程解的线性组合是总方程的解)
二阶线性偏微分方程的分类
两个自变量的二阶偏微分方程的分类
大于0为双曲型(波动方程),等于0为抛物型(热传导方程),小于0为椭圆型(拉普拉斯方程)
两个自变量的二阶方程的化简
1.判断方程类型
2.求特征方程
3.双曲型:积分找到两族积分曲线
抛物型:积分找到一组曲线,在找一个与之线性无关的函数作为另一组积分曲线
椭圆型:实部作为一组,虚部作为一组
4.做变换
5.求偏导代入原方程
一、分离变量法、驻波法(齐次线性方程,齐次边界条件,非齐次初始条件)
1.假设分离:X(x)T(t)
2.解固有值问题(一般利用初始条件)(施图姆—刘维尔问题),常微分,求出固有值
3.将固有值代入另一个式子中,在将X,T合并,利用叠加原理求得方程的解形式
4.根据所给边界条件求出解形式中的未知参数(一般利用0或者傅里叶级数,周期延拓,表格法积分),傅里叶系数公式(P34)
对于拉普拉斯方程:
(1)矩形域(2)圆域(极坐标转换,周期性,边界,有界性)(这种情况下可以利用泊松公式求解,P44)
二、固有函数法(非齐次线性方程,齐次边界条件,齐次初始条件)、常数变易法
1.求齐次方程满足齐次边界条件的固有函数系
2.设所求的解为固有函数的线性组合(系数为t的函数)
3.将方程中的自由项也按上述固有函数系展开成傅里叶级数
4.代入原方程,得到常微分方程
5.解常微分方程的边值问题(利用拉普拉斯变换法加卷积或常数变易法)
三、分离变量法+固有函数法(非齐次线性方程,齐次边界条件,非齐次初始条件)
将问题拆解为(一、二)两个问题,分别采用分离变量和固有函数法进行求解
需要注意的是,在求解泊松方程时,会用到欧拉方程的求解(高数)(试探法(X))
四、辅助函数法(非齐次线性方程,非齐次边界条件,非齐次初始条件)
1.设法做一个代换将边界条件化为齐次的,令u=w+v
2.选取辅助函数w使新的未知函数v满足齐次边界条件
3.通常取w为一次式,w=A(t)x+B(t),由条件确定A,B,这是在边界条件全是第一类边界条件情况下,若出现第二类边界条件,w的设置有变化(P54)
4.下面就是求解v的定解问题(非齐次方程,齐次边界,非齐次初始),具体条件格式见公式(P53)
一维波动和热传导方程在无界区域上的定解问题
非齐次线性方程,非齐次初始条件
拆解:(1)齐次线性方程,非齐次初始条件+(2)非齐次线性方程,齐次初始条件
(1)的定解问题求解
五、达朗贝尔公式、行波法(x取值范围无穷,无界区域)
1.判断方程类型
2.求特征方程,找出积分曲线,做变换
3.化简方程,一般可以直接积分出原方程,积分得通解f1+f2
4.将代换后的量换回来,变成x,t的方程
5.代入初始条件,通过复合函数代换求出f1(x),f2(x)
6.最后代入变换量
直接套用达朗贝尔公式,其物理意义就是行波
依赖区间、决定区域、影响区域
半无限长区间
1.通过把半无界区间延拓到整个无界区间,可以做奇延拓。
2.再应用达朗贝尔公式求解,只分析x>=0或x<=0时(半区间)即可(在x=0处不一定满足,因此是弱解)
(2)的定解问题求解
六、齐次化原理(可用于高维)(可用于固定区间,一般结果与固有函数法求得的一致)
将自由项拆解为多个小t时段,对于每个时段,之前都是0,之后都是0,因此分为三段,之前是一个齐次问题,直接用达朗贝尔公式求解,解(0)作为下一段的初值,之间是一个非齐次0初值问题,利用冲量原理和定积分的概念推得这段内u取值在t充分小时,近似为0,之后是一个齐次非0初值问题,求得解。最终直接出来公式(P73)
对于这整个无界区域上的定解问题,综合公式(P74定理3.2)
七、三维波动方程的基尔霍夫公式
直接套公式(P77)
1:0~pi 2:0~2pi
x=x+atsin1cos2
y=y+atsin1sin2
z=z+atcos1
*sin1d1d2
八、降维法(二维波动方程初值问题)
直接套泊松公式(P78)
p:0~t o:0~2pi
x=x+pcoso
y=y+psino
*pdodp
九、积分变换法(F针对x,L针对t)
x无边界时用Fourier变换
x有边界时一般用Laplace变换,但有些情况下用Fourier变换
1.对方程中各项选择适当变量施行积分变换
2.解像函数的常微分方程的定解问题
3.求逆变换的原定问题的解(一般利用卷积定理)
有限积分变换(P90)一般用于出现范围0~pi时
十、格林函数法(拉普拉斯方程边值问题)
解的形式是一个积分
球对称解,基本解,格林第一公式,格林第二公式,调和函数的积分表达式,调和函数的基本性质
狄利克雷问题最多只有一个解
格林函数求解拉普拉斯方程和泊松方程公式(P108、P109)(P111)
格林函数的物理意义(电势)
找格林函数要找到一个使得面电势为0的镜像对称位置,才能应用格林公式
(1)半空间的格林函数及狄利克雷问题(对称)
(2)球域的格林函数及狄利克雷问题(球对称)(P113)
1.利用镜像法找出v,进而求得格林函数
2.根据解的公式,求出格林函数的外法向导数代入公式求得解
十一、贝塞尔函数
幂级数解常微分方程,微分方程解的理论(P122笔记)
τ函数的性质
贝塞尔方程及贝塞尔函数的形式(P125)
s=n,s=-n
求解确定系数时:
n不是整数(包括0)且不是半奇数:+-n阶第一类贝塞尔函数(特解),第二类贝塞尔函数(诺依曼函数)(通解)
n是整数:同
得到通解形式(P128)
贝塞尔函数的递推公式
按贝塞尔函数展开成级数
(1)贝塞尔函数的零点
(2)贝塞尔函数系的正交性
(3)贝塞尔函数的模
(4)傅里叶—贝塞尔级数(P135)(公式)
贝塞尔函数是在利用其他方法求解的时候,例如解固有值问题时,出现贝塞尔方程,可以利用其通解形式及贝塞尔函数表示固有值和固有函数,并利用傅里叶—贝塞尔级数利用级数求解的方法找到解
十二、特征线法(一阶线性偏微分方程)
1.写出特征方程(注意符号)
2.积分,找到x,y的关系,将x,y移动至一边,设和设为一个C
3.再利用u和其中一个变量之间的关系积分,找到u和其的关系,用D
4.因为C,D均为常数,可以设二者间存在一个函数关系f,自变量是C,因变量是D
5.用f代替D即可