信号与系统——总结(不全,勿看)

信号与系统——总结(不全,勿看)

请勿点开看

一、信号与系统

1 连续时间和离散时间信号

连续时间信号
  自变量是连续可变的。

离散时间信号
  仅定义在离散时刻点上。

能量与功率定义式
E ∞ = lim ⁡ T → ∞ ∫ − T T ∣ x ( t ) ∣ 2 d t = ∫ − ∞ + ∞ ∣ x ( t ) ∣ 2 d t E_\infty = \lim_{T \rightarrow\infty}\int_{-T}^T|x(t)|^2dt=\int_{-\infty}^{+\infty}|x(t)|^2 dt E=TlimTTx(t)2dt=+x(t)2dt E ∞ = lim ⁡ N → ∞ ∑ n = − N + N ∣ x [ n ] ∣ 2 = ∑ n = − ∞ + ∞ ∣ x [ n ] ∣ 2 E_\infty=\lim_{N \rightarrow\infty}\sum_{n=-N}^{+N}|x[n]|^2=\sum_{n=-\infty}^{+\infty}|x[n]|^2 E=Nlimn=N+Nx[n]2=n=+x[n]2 P ∞ = lim ⁡ T → ∞ 1 2 T ∫ − T T ∣ x ( t ) ∣ 2 d t P_\infty=\lim_{T\rightarrow\infty}\frac{1}{2T}\int_{-T}^T|x(t)|^2dt P=Tlim2T1TTx(t)2dt P ∞ = lim ⁡ N → ∞ 1 2 N + 1 ∑ n = − N + N ∣ x [ n ] ∣ 2 P_\infty=\lim_{N\rightarrow\infty}\frac{1}{2N+1}\sum_{n=-N}^{+N}|x[n]|^2 P=Nlim2N+11n=N+Nx[n]2

2 自变量的变换

时移
  对于x(t)→x(t+a):a>0时图像左移;a<0时图像右移。

时间反转
  对于x(t)→x(-t):围绕y轴对称反转。

尺度变换
  对于x(t)→x(at):|a|>1,则图形压缩;0<|a|<1,则图形拉伸。

周期信号
  在整个时间轴上,不断重复同一周期波形的信号,称为周期信号。
x ( t + T ) = x ( t ) x(t+T)=x(t) x(t+T)=x(t) x [ n + N ] = x [ n ] x[n+N]=x[n] x[n+N]=x[n]  最小正值T和N被称为基波周期。

偶信号
x ( t ) = x ( − t ) x(t)=x(-t) x(t)=x(t) x [ n ] = x [ − n ] x[n]=x[-n] x[n]=x[n]

奇信号
x ( t ) = − x ( − t ) x(t)=-x(-t) x(t)=x(t) x [ n ] = − x [ − n ] x[n]=-x[-n] x[n]=x[n]

任何函数都可以被分解为偶部和奇部。
E v { x ( t ) } = 1 2 [ x ( t ) + x ( − t ) ] Ev\{x(t)\}=\frac{1}{2}[x(t)+x(-t)] Ev{ x(t)}=21[x(t)+x(t)] O d { x ( t ) } = 1 2 [ x ( t ) − x ( − t ) ] Od\{x(t)\}=\frac{1}{2}[x(t)-x(-t)] Od{ x(t)}=21[x(t)x(t)]

3 指数信号与正弦信号

连续时间

复指数信号
x ( t ) = C e a t x(t)=Ce^{at} x(t)=Ceat

  如果C和a都是实数,那么x(t)为实指数信号。
  一般来说,C和a都是复数。

周期复指数和正弦信号
  当a为纯虚数,周期复指数可以表示为 x ( t ) = e j ω 0 t x(t)=e^{j\omega_0 t} x(t)=ejω0t

  根据欧拉公式,有 e j ω 0 t = c o s ω 0 t + j s i n ω 0 t e^{j\omega_0t}=cos\omega_0t+jsin\omega_0t ejω0t=cosω0t+jsinω0t

  正弦信号与复指数信号密切相关 x ( t ) = A c o s ( ω 0 t + ϕ ) x(t)=Acos(\omega_0t+\phi) x(t)=Acos(ω0t+ϕ)

  正弦信号也能用相同基波周期的复指数信号表示 A c o s ( ω 0 t + ϕ ) = A 2 ( e j ϕ e j ω 0 t + e − j ϕ e − j ω 0 t ) Acos(\omega_0t+\phi)=\frac{A}{2}(e^{j\phi}e^{j\omega_0t}+e^{-j\phi}e^{-j\omega_0t}) Acos(ω0t+ϕ)=2A(ejϕejω0t+ejϕejω0t) A s i n ( ω 0 t + ϕ ) = A 2 j ( e j ϕ e j ω 0 t − e − j ϕ e − j ω 0 t ) Asin(\omega_0t+\phi)=\frac{A}{2j}(e^{j\phi}e^{j\omega_0t}-e^{-j\phi}e^{-j\omega_0t}) Asin(ω0t+ϕ)=2jA(ejϕejω0tejϕejω0t) A c o s ( ω 0 t + ϕ ) = A R e { e j ( ω 0 t + ϕ ) } Acos(\omega_0t+\phi)=ARe\{e^{j(\omega_0t+\phi)}\} Acos(ω0t+ϕ)=ARe{ ej(ω0t+ϕ)} A s i n ( ω 0 t + ϕ ) = A I m { e j ( ω 0 t + ϕ ) } Asin(\omega_0t+\phi)=AIm\{e^{j(\omega_0t+\phi)}\} Asin(ω0t+ϕ)=AIm{ ej(ω0t+ϕ)}

一般复指数信号
  对于复指数 C e α t Ce^{\alpha t} Ceαt,C用极坐标,α用笛卡尔坐标表示,有 C = ∣ C ∣ e j θ C=|C|e^{j\theta} C=Cejθ a = r + j ω 0 a=r+j\omega_0 a=r+jω0  那么 C e α t = ∣ C ∣ e r t e j ( ω 0 t + θ ) Ce^{\alpha t}=|C|e^{rt}e^{j(\omega_0 t +\theta)} Ceαt=Certej(ω0t+θ)  利用欧拉关系,有 C e α t = ∣ C ∣ e r t c o s ( ω 0 t + θ ) + j ∣ C ∣ e r t s i n ( ω 0 t + θ ) Ce^{\alpha t}=|C|e^{rt}cos(\omega_0t+\theta)+j|C|e^{rt}sin(\omega_0t+\theta) Ceαt=Certcos(ω0t+θ)+jCertsin(ω0t+θ)  若r=0,那么实部和虚部都是正弦函数。

离散时间

离散时间复指数信号与正弦信号
  复指数信号的定义式为 x [ n ] = C α n x[n]=C\alpha^n x[n]=Cαn  若令 α = e β \alpha=e^\beta α=eβ,则有 x [ n ] = C e β n x[n]=Ce^{\beta n} x[n]=Ceβn

  当C和α都是常数的时候,上式为实指数信号。
  若β为纯虚数,即|α|=1,那么对于 x [ n ] = e j ω 0 n x[n]=e^{j\omega_0n} x[n]=ejω0n e j ω 0 n = c o s ω 0 n + j s i n ω 0 n e^{j\omega_0n}=cos\omega_0n+jsin\omega_0n ejω0n=cosω0n+jsinω0n  其与正弦信号密切相关。 x [ n ] = A c o s ( ω 0 n + ϕ ) = A 2 ( e j ϕ e j ω 0 n + e − j ϕ e − j ω 0 n ) x[n]=Acos(\omega_0n+\phi)=\frac{A}{2}(e^{j\phi}e^{j\omega_0n}+e^{-j\phi}e^{-j\omega_0n}) x[n]=Acos(ω0n+ϕ)=2A(ejϕejω0n+ejϕejω0n)  若是一般的离散时间复指数信号,C与α以极坐标形式给出 C = ∣ C ∣ e j θ C=|C|e^{j\theta} C=Cejθ α = ∣ α ∣ e j ω 0 \alpha=|\alpha|e^{j\omega_0} α=αejω0 C α n = ∣ C ∣ ∣ α ∣ n c o s ( ω 0 n + θ ) + j ∣ C ∣ ∣ α ∣ n s i n ( ω 0 n + θ ) C\alpha^n=|C||\alpha|^ncos(\omega_0n+\theta)+j|C||\alpha|^nsin(\omega_0n+\theta) Cαn=Cαncos(ω0n+θ)+jCαnsin(ω0n+θ)

离散时间复指数序列的周期性

结论
x [ n ] = e j ω 0 n x[n]=e^{j\omega_0n} x[n]=ejω0n  对于该序列,其具有周期性的条件为 ω 0 2 π = m N \frac{\omega_0}{2\pi}=\frac{m}{N} 2πω0=Nm,N为周期。

证明
  若上序列为周期序列,那么有 e j ω 0 ( n + N ) = e j ω 0 n e^{j\omega_0(n+N)}=e^{j\omega_0n} ejω0(n+N)=ejω0n  所以,有 e j ω 0 N = 1 e^{j\omega_0N}=1 ejω0N=1  即 ω 0 N = 2 π m \omega_0N=2\pi m ω0N=2πm  或者 ω 0 2 π = m N \frac{\omega_0}{2\pi}=\frac{m}{N} 2πω0=Nm  其中m为整数。

4 单位冲激与单位阶跃函数

离散时间

定义式
δ [ n ] = { 0 n ≠ 0 1 n = 0 \delta[n]=\begin{cases}0&n≠0\\1&n=0\end{cases} δ[n]={ 01n=0n=0 u [ n ] = { 0 n < 0 1 n ≥ 0 u[n]=\begin{cases}0&n<0\\1&n≥0\end{cases} u[n]={ 01n0n0

关系式
δ [ n ] = u [ n ] − u [ n − 1 ] \delta[n]=u[n]-u[n-1] δ[n]=u[n]u[n1] u [ n ] = ∑ m = − ∞ n δ [ m ] u[n]=\sum_{m=-\infty}^n\delta[m] u[n]=m=nδ[m] u [ n ] = ∑ k = 0 n δ [ n − k ] u[n]=\sum_{k=0}^n\delta[n-k] u[n]=k=0nδ[nk]

单位脉冲的采样性质
x [ n ] δ [ n ] = x [ 0 ] δ [ n ] x[n]\delta[n]=x[0]\delta[n] x[n]δ[n]=x[0]δ[n] x [ n ] δ [ n − n 0 ] = x [ n 0 ] δ [ n − n 0 ] x[n]\delta[n-n_0]=x[n_0]\delta[n-n_0] x[n]δ[nn0]=x[n0]δ[nn0]

连续时间

定义式
δ ( t ) = { 0 t ≠ 0 1 t = 0 \delta(t)=\begin{cases}0&t≠0\\1&t=0\end{cases} δ(t)={ 01t=0t=0 u ( t ) = { 0 t < 0 1 t > 0 u(t)=\begin{cases}0&t<0\\1&t>0\end{cases} u(t)={ 01t0t0

关系式
δ ( t ) = d u ( t ) d t \delta(t)=\frac{du(t)}{dt} δ(t)=dtdu(t) u ( t ) = ∫ − ∞ t δ ( τ ) d τ u(t)=\int_{-\infty}^t\delta(\tau)d\tau u(t)=tδ(τ)dτ u ( t ) = ∫ 0 ∞ δ ( t − σ ) d σ u(t)=\int_0^\infty \delta(t-\sigma)d\sigma u(t)=0δ(tσ)dσ

单位冲激函数采样性质
x ( t ) δ ( t ) = x ( 0 ) δ ( t ) x(t)\delta(t)=x(0)\delta(t) x(t)δ(t)=x(0)δ(t) x ( t ) δ ( t − t 0 ) = x ( t 0 ) δ ( t − t 0 ) x(t)\delta(t-t_0)=x(t _0)\delta(t-t_0) x(t)δ(tt0)=x(t0)δ(tt0)

单位冲激函数尺度变换性质
δ ( a t ) = 1 ∣ a ∣ δ ( t ) \delta(at)=\frac{1}{|a|}\delta(t) δ(at)=a1δ(t) δ ( t ) = δ ( − t ) \delta(t)=\delta(-t) δ(t)=δ(t)

5 连续时间与离散时间系统

简单系统举例

一阶线性微分方程
d y ( t ) d t + a y ( t ) = b x ( t ) \frac{dy(t)}{dt}+ay(t)=bx(t) dtdy(t)+ay(t)=bx(t)

一阶线性差分方程
y [ n ] + a y [ n − 1 ] = b x [ n ] y[n]+ay[n-1]=bx[n] y[n]+ay[n1]=bx[n]

系统的互联

  ① 串联/级联
  ② 并联
  ③ 级联与并联组合
  ④ 反馈互联

6 基本系统性质

记忆系统与无记忆系统

无记忆系统
  如果对于自变量的每一个值,一个系统的输出仅仅取决于该时刻的输入,这个系统就称为无记忆系统。

举例
  ① 恒等系统: y ( t ) = x ( t ) y(t)=x(t) y(t)=x(t)  ② 累加器/相加器: y [ n ] = ∑ k = − ∞ n x [ k ] y[n]=\sum_{k=-\infty}^nx[k]

  • 2
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值