论文翻译-RetinaFace

RetinaFace是一种单阶段的人脸检测器,可在不同尺度上执行像素级的人脸定位,通过结合额外监督和自我监督的多任务学习实现。在WIDER FACE困难测试集上,它的平均精度超过现有技术1.1%,达到91.4%。此外,RetinaFace还能在IJB-C测试集中提升ArcFace的面部验证结果,并能使用轻量级网络实现实时运行。
摘要由CSDN通过智能技术生成

  这篇论文是今年5月4号发表的一篇关于人脸检测的研究,他在WIDER FACE上的可以识别出像素级别的人脸,可以说已经很厉害了!WIDER FACE 几乎是目前评估人脸检测算法最权威的数据集,WIDER FACE数据集是由香港中文大学发布的大型人脸数据集,含32,203幅图像和393,703个高精度人脸包围框,该库中人脸包含尺度、姿态、表情、遮挡和光照等变化。
paper链接:https://arxiv.org/pdf/1905.00641.pdf
github地址:https://github.com/deepinsight/insightface/tree/master/RetinaFace


RetinaFace: Single-stage Dense Face Localisation in the Wild
译:RetinaFace:户外稠密图像的单体人脸检测

摘要:

Though tremendous strides have been made in uncontrolled face detection, accurate and efficient face localisation in the wild remains an open challenge. This paper presents a robust single-stage face detector, named RetinaFace, which performs pixel-wise face localisation on various scales of faces by taking advantages of joint extra-supervised and self-supervised multi-task learning.Specifically, We make contributions in the following five aspects: (1) We manually annotate five facial landmarks on the WIDER FACE dataset and observe significant improvement in hard face detection with the assistance of this extra supervision signal. (2) We further add a selfsupervised mesh decoder branch for predicting a pixel-wise 3D shape face information in parallel with the existing supervised branches. (3) On the WIDER FACE hard test set,RetinaFace outperforms the state of the art average precision (AP) by 1.1% (achieving AP equal to 91.4%). (4) On the IJB-C test set, RetinaFace enables state of the art methods (ArcFace) to improve their resu

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值