pytorch多GPU训练教程

在这里插入图片描述

pytorch多GPU训练教程

1. Torch 的两种并行化模型封装

1.1 DataParallel

DataParallel 是 PyTorch 提供的一种数据并行方法,用于在单台机器上的多个 GPU 上进行模型训练。它通过将输入数据划分成多个子部分(mini-batches),并将这些子部分分配给不同的 GPU,以实现并行计算。
在前向传播过程中,输入数据会被划分成多个副本并发送到不同的设备(device)上进行计算。模型(module)会被复制到每个设备上,这意味着输入的批次(batch)会被平均分配到每个设备,但模型会在每个设备上有一个副本。每个模型副本只需要处理对应的子部分。需要注意的是,批次大小应大于GPU数量。在反向传播过程中,每个副本的梯度会被累加到原始模型中。总结来说,DataParallel会自动将数据切分并加载到相应的GPU上,将模型复制到每个GPU上,进行正向传播以计算梯度并汇总。
注意:DataParallel是单进程多线程的,仅仅能工作在单机中。
封装示例:

import torch
import torch.nn as nn
import torch.optim as optim

# 定义模型
class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = nn.Linear(10, 1)

    def forward(self, x):
        return self.fc(x)

# 初始化模型
model = SimpleModel()

# 使用 DataParallel 将模型分布到多个 GPU 上
model = nn.DataParallel(model)

1.2 DistributedDataParallel

DistributedDataParallel (DDP) 是 PyTorch 提供的一个用于分布式数据并行训练的模块,适用于单机多卡和多机多卡的场景。相比于 DataParallel,DDP 更加高效和灵活,能够在多个 GPU 和多个节点上进行并行训练。
DistributedDataParallel是多进程的,可以工作在单机或多机器中。DataParallel通常会慢于DistributedDataParallel。所以目前主流的方法是DistributedDataParallel。
封装示例:

import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP

def main(rank, world_size):
    # 初始化进程组
    dist.init_process_group("nccl", rank=rank, world_size=world_size)
    
    # 创建模型并移动到GPU
    model = SimpleModel().to(rank)
    
    # 包装模型为DDP模型
    ddp_model = DDP(model, device_ids=[rank])
    

if __name__ == "__main__":
    import os
    import torch.multiprocessing as mp

    # 世界大小:总共的进程数
    world_size = 4
    
    # 使用mp.spawn启动多个进程
    mp.spawn(main, args=(world_size,), nprocs=world_size, join=True)

2. 多GPU训练的三种架构组织方式


由于上一节的讨论,本节所有源码均由DDP封装实现。
###2.1 数据拆分,模型不拆分(Data Parallelism)
数据并行(Data Parallelism)将输入数据拆分成多个子部分(mini-batches),并分配给不同的 GPU 进行计算。每个 GPU 上都有一份完整的模型副本。这种方式适用于模型相对较小,但需要处理大量数据的场景。
由于下面的代码涉及了rank、world_size等概念,这里先做一下简要普及。
** Rank**
rank 是一个整数,用于标识当前进程在整个分布式训练中的身份。每个进程都有一个唯一的 rank。rank 的范围是 0 到 world_size - 1。

  • 用于区分不同的进程。
  • 可以根据 rank 来分配不同的数据和模型部分。

World Size
world_size 是一个整数,表示参与分布式训练的所有进程的总数。

  • 确定分布式训练中所有进程的数量。
  • 用于初始化通信组,确保所有进程能够正确地进行通信和同步。

Backend
backend 指定了用于进程间通信的后端库。常用的后端有 nccl(适用于 GPU)、gloo(适用于 CPU 和 GPU)和 mpi(适用于多种设备)。

  • 决定了进程间通信的具体实现方式。
  • 影响训练的效率和性能。

Init Method
init_method 指定了初始化分布式环境的方法。常用的初始化方法有 TCP、共享文件系统和环境变量。

  • 用于设置进程间通信的初始化方式,确保所有进程能够正确加入到分布式训练中。

Local Rank
local_rank 是每个进程在其所在节点(机器)上的本地标识。不同节点上的进程可能会有相同的 local_rank。

  • 用于将每个进程绑定到特定的 GPU 或 CPU。
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
import torch.multiprocessing as mp

class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.fc = nn.Linear(10, 1)

    def forward(self, x):
        return self.fc(x)

def train(rank, world_size):
    dist.init_process_group(backend='nccl', init_method='tcp://127.0.0.1:29500', rank=rank, world_size=world_size)
    
    model = SimpleModel().to(rank)
    ddp_model = DDP(model, device_ids=[rank])
    
    criterion = nn.MSELoss().to(rank)
    optimizer = optim.SGD(ddp_model
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Moresweet猫甜

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值