主成分分析(PCA)原理总结

我只是一名搬运工,以下内容来自:刘建平Pinard:https://www.cnblogs.com/pinard/p/6239403.html


1. 前言

  主成分分析(Principal components analysis,以下简称PCA)是最重要的降维方法之一。在数据压缩消除冗余和数据噪音消除等领域都有广泛的应用。一般我们提到降维最容易想到的算法就是PCA,下面我们就对PCA的原理做一个总结。

2. PCA的思想

  PCA顾名思义,就是找出数据里最主要的方面,用数据里最主要的方面来代替原始数据。具体的,假如我们的数据集是n维的,共有m个数据 ( x ( 1 ) , x ( 2 ) , . . . , x ( m ) ) (x^{(1)},x^{(2)},...,x^{(m)}) (x(1),x(2),...,x(m))。我们希望将这m个数据的维度从n维降到n’维,希望这m个n’维的数据集尽可能的代表原始数据集。我们知道数据从n维降到n’维肯定会有损失,但是我们希望损失尽可能的小。那么如何让这n’维的数据尽可能表示原来的数据呢?

  我们先看看最简单的情况,也就是n=2,n’=1,也就是将数据从二维降维到一维。数据如下图。我们希望找到某一个维度方向,它可以代表这两个维度的数据。图中列了两个向量方向, u 1 u_1 u1 u 2 u_2 u2,那么哪个向量可以更好的代表原始数据集呢?从直观上也可以看出, u 1 u_1 u1 u 2 u_2 u2好。
在这里插入图片描述
  为什么 u 1 u_1 u1 u 2 u_2 u2好呢?可以有两种解释,第一种解释是样本点到这个直线的距离足够近,第二种解释是样本点在这个直线上的投影能尽可能的分开。

  假如我们把n’从1维推广到任意维,则我们的希望降维的标准为:样本点到这个超平面的距离足够近,或者说样本点在这个超平面上的投影能尽可能的分开。

  基于上面的两种标准,我们可以得到PCA的两种等价推导。

3. PCA的推导:基于最小投影距离

  我们首先看第一种解释的推导,即样本点到这个超平面的距离足够近。

  假设m个n维数据 ( x ( 1 ) , x ( 2 ) , . . . , x ( m ) ) (x^{(1)}, x^{(2)},...,x^{(m)}) (x(1),x(2),...,x(m))都已经进行了中心化,即 ∑ i = 1 m x ( i ) = 0 \sum\limits_{i=1}^{m}x^{(i)}=0 i=1mx(i)=0。经过投影变换后得到的新坐标系为 { w 1 , w 2 , . . . , w n } \{w_1,w_2,...,w_n\} {w1,w2,...,wn},其中 w w w是标准正交基,即 ∣ ∣ w ∣ ∣ 2 = 1 , w i T w j = 0 ||w||_2=1, w_i^Tw_j=0 w2=1,wiTwj=0

  如果我们将数据从n维降到n’维,即丢弃新坐标系中的部分坐标,则新的坐标系为 { w 1 , w 2 , . . . , w n ′ } \{w_1,w_2,...,w_{n'}\} {w1,w2,...,wn},样本点 x ( i ) x^{(i)} x(i)在n’维坐标系中的投影为: z ( i ) = ( z 1 ( i ) , z 2 ( i ) , . . . , z n ′ ( i ) ) T z^{(i)} = (z_1^{(i)}, z_2^{(i)},...,z_{n'}^{(i)})^T z(i)=(z1(i),z2(i),...,zn(i))T.其中, z j ( i ) = w j T x ( i ) z_j^{(i)} = w_j^Tx^{(i)} zj(i)=wjTx(i) x ( i ) x^{(i)} x(i)在低维坐标系里第j维的坐标。

  如果我们用 z ( i ) z^{(i)} z(i)来恢复原始数据 x ( i ) x^{(i)} x(i),则得到的恢复数据 x ‾ ( i ) = ∑ j = 1 n ′ z j ( i ) w j = W z ( i ) \overline{x}^{(i)} = \sum\limits_{j=1}^{n'}z_j^{(i)}w_j = Wz^{(i)} x(i)=j=1nzj(i)wj=Wz(i),其中,W为标准正交基组成的矩阵。

  现在我们考虑整个样本集,我们希望所有的样本到这个超平面的距离足够近,即最小化下式: ∑ i = 1 m ∣ ∣ x ‾ ( i ) − x ( i ) ∣ ∣ 2 2 \sum\limits_{i=1}^{m}||\overline{x}^{(i)} - x^{(i)}||_2^2 i=1mx(i)x(i)22

  将这个式子进行整理,可以得到:
∑ i = 1 m ∣ ∣ x ‾ ( i ) − x ( i ) ∣ ∣ 2 2 = ∑ i = 1 m ∣ ∣ W z ( i ) − x ( i ) ∣ ∣ 2 2 ( 1 ) = ∑ i = 1 m ( W z ( i ) ) T ( W z ( i ) ) − 2 ∑ i = 1 m ( W z ( i ) ) T x ( i ) + ∑ i = 1 m x ( i ) T x ( i ) ( 2 ) = ∑ i = 1 m z ( i ) T z ( i ) − 2 ∑ i = 1 m z ( i ) T W T x ( i ) + ∑ i = 1 m x ( i ) T x ( i ) ( 3 ) = ∑ i = 1 m z ( i ) T z ( i ) − 2 ∑ i = 1 m z ( i ) T z ( i ) + ∑ i = 1 m x ( i ) T x ( i ) ( 4 ) = − ∑ i = 1 m z ( i ) T z ( i ) + ∑ i = 1 m x ( i ) T x ( i ) ( 5 ) = − t r ( W T ( ∑ i = 1 m x ( i ) x ( i ) T ) W ) + ∑ i = 1 m x ( i ) T x ( i ) ( 6 ) = − t r ( W T X X T W ) + ∑ i = 1 m x ( i ) T x ( i ) ( 7 ) \begin{aligned} \sum\limits_{i=1}^{m}||\overline{x}^{(i)} - x^{(i)}||_2^2 & = \sum\limits_{i=1}^{m}|| Wz^{(i)}- x^{(i)}||_2^2 &(1)\\ & = \sum\limits_{i=1}^{m}(Wz^{(i)})^T(Wz^{(i)})- 2\sum\limits_{i=1}^{m}(Wz^{(i)})^Tx^{(i)} + \sum\limits_{i=1}^{m}x^{(i)T}x^{(i)} &(2)\\ & = \sum\limits_{i=1}^{m}z^{(i)T}z^{(i)} - 2\sum\limits_{i=1}^{m}z^{(i)T}W^Tx^{(i)} +\sum\limits_{i=1}^{m}x^{(i)T}x^{(i)} &(3)\\ & = \sum\limits_{i=1}^{m}z^{(i)T}z^{(i)} - 2\sum\limits_{i=1}^{m}z^{(i)T}z^{(i)}+\sum\limits_{i=1}^{m}x^{(i)T}x^{(i)} &(4)\\ & = - \sum\limits_{i=1}^{m}z^{(i)T}z^{(i)} + \sum\limits_{i=1}^{m}x^{(i)T}x^{(i)} &(5)\\ & =-tr( W^T(\sum\limits_{i=1}^{m}x^{(i)}x^{(i)T})W) + \sum\limits_{i=1}^{m}x^{(i)T}x^{(i)} &(6)\\ & = -tr( W^TXX^TW) + \sum\limits_{i=1}^{m}x^{(i)T}x^{(i)} &(7)\\ \end{aligned} i=1mx(i)x(i)22=i=1mWz(i)x(i)22=i=1m(Wz(i))T(Wz(i))2i=1m(Wz(i))Tx(i)+i=1mx(i)Tx(i)=i=1mz(i)Tz(i)2i=1mz(i)TWTx(i)+i=1mx(i)Tx(i)=i=1mz(i)Tz(i)2i=1mz(i)Tz(i)+i=1mx(i)Tx(i)=i=1mz(i)Tz(i)+i=1mx(i)Tx(i)=tr(WTi=1mx(i)x(i)T)W)+i=1mx(i)Tx(i)=tr(WTXXTW)+i=1mx(i)Tx(i)(1)(2)(3)(4)(5)(6)(7)

  其中第(1)步用到了 x ‾ ( i ) = W z ( i ) \overline{x}^{(i)}=Wz^{(i)} x(i)=Wz(i),第二步用到了平方和展开,第(3)步用到了矩阵转置公式 ( A B ) T = B T A T (AB)^T =B^TA^T (AB)T=BTAT W T W = I W^TW=I WTW=I,第(4)步用到了 z ( i ) = W T x ( i ) z^{(i)}=W^Tx^{(i)} z(i)=WTx(i),第(5)步合并同类项,第(6)步用到了 z ( i ) = W T x ( i ) z^{(i)}=W^Tx^{(i)} z(i)=WTx(i)和矩阵的迹,第7步将代数和表达为矩阵形式。

  注意到 ∑ i = 1 m x ( i ) x ( i ) T \sum\limits_{i=1}^{m}x^{(i)}x^{(i)T} i=1mx(i)x(i)T是数据集的协方差矩阵,W的每一个向量 w j w_j wj是标准正交基。而 ∑ i = 1 m x ( i ) T x ( i ) \sum\limits_{i=1}^{m}x^{(i)T}x^{(i)} i=1mx(i)Tx(i)是一个常量。最小化上式等价于:
a r g    m i n ⎵ W    − t r ( W T X X T W )      s . t . W T W = I \underbrace{arg\;min}_{W}\;-tr( W^TXX^TW)\;\;s.t. W^TW=I W argmintr(WTXXTW)s.t.WTW=I

  这个最小化不难,直接观察也可以发现最小值对应的W由协方差矩阵 X X T XX^T XXT最大的n’个特征值对应的特征向量组成。当然用数学推导也很容易。利用拉格朗日函数可以得到
J ( W ) = − t r ( W T X X T W + λ ( W T W − I ) ) J(W) = -tr( W^TXX^TW + \lambda(W^TW-I)) J(W)=tr(WTXXTW+λ(WTWI))

  对W求导有 − X X T W + λ W = 0 -XX^TW+\lambda W=0 XXTW+λW=0, 整理下即为:
X X T W = λ W XX^TW=\lambda W XXTW=λW

  这样可以更清楚的看出,W为 X X T XX^T XXT的n’个特征向量组成的矩阵,而 λ \lambda λ X X T XX^T XXT的若干特征值组成的矩阵,特征值在主对角线上,其余位置为0。当我们将数据集从n维降到n’维时,需要找到最大的n’个特征值对应的特征向量。这n’个特征向量组成的矩阵W即为我们需要的矩阵。对于原始数据集,我们只需要用 z ( i ) = W T x ( i ) z^{(i)}=W^Tx^{(i)} z(i)=WTx(i),就可以把原始数据集降维到最小投影距离的n’维数据集。

  如果你熟悉谱聚类的优化过程,就会发现和PCA的非常类似,只不过谱聚类是求前k个最小的特征值对应的特征向量,而PCA是求前k个最大的特征值对应的特征向量。

4. PCA的推导:基于最大投影方差

  现在我们再来看看基于最大投影方差的推导。

  假设m个n维数据 ( x ( 1 ) , x ( 2 ) , . . . , x ( m ) ) (x^{(1)}, x^{(2)},...,x^{(m)}) (x(1),x(2),...,x(m))都已经进行了中心化,即 ∑ i = 1 m x ( i ) = 0 \sum\limits_{i=1}^{m}x^{(i)}=0 i=1mx(i)=0。经过投影变换后得到的新坐标系为 { w 1 , w 2 , . . . , w n } \{w_1,w_2,...,w_n\} {w1,w2,...,wn},其中 w w w是标准正交基,即 ∣ ∣ w ∣ ∣ 2 = 1 , w i T w j = 0 ||w||_2=1, w_i^Tw_j=0 w2=1,wiTwj=0

  如果我们将数据从n维降到n’维,即丢弃新坐标系中的部分坐标,则新的坐标系为 { w 1 , w 2 , . . . , w n ′ } \{w_1,w_2,...,w_{n'}\} {w1,w2,...,wn},样本点 x ( i ) x^{(i)} x(i)在n’维坐标系中的投影为: z ( i ) = ( z 1 ( i ) , z 2 ( i ) , . . . , z n ′ ( i ) ) T z^{(i)} = (z_1^{(i)}, z_2^{(i)},...,z_{n'}^{(i)})^T z(i)=(z1(i),z2(i),...,zn(i))T.其中, z j ( i ) = w j T x ( i ) z_j^{(i)} = w_j^Tx^{(i)} zj(i)=wjTx(i) x ( i ) x^{(i)} x(i)在低维坐标系里第j维的坐标。

  对于任意一个样本 x ( i ) x^{(i)} x(i),在新的坐标系中的投影为 W T x ( i ) W^Tx^{(i)} WTx(i),在新坐标系中的投影方差为 W T x ( i ) x ( i ) T W W^Tx^{(i)}x^{(i)T}W WTx(i)x(i)TW,要使所有的样本的投影方差和最大,也就是最大化 ∑ i = 1 m W T x ( i ) x ( i ) T W \sum\limits_{i=1}^{m}W^Tx^{(i)}x^{(i)T}W i=1mWTx(i)x(i)TW的迹,即:
a r g    m a x ⎵ W    t r ( W T X X T W )      s . t . W T W = I \underbrace{arg\;max}_{W}\;tr( W^TXX^TW)\;\;s.t. W^TW=I W argmaxtr(WTXXTW)s.t.WTW=I

  观察第二节的基于最小投影距离的优化目标,可以发现完全一样,只是一个是加负号的最小化,一个是最大化。

  利用拉格朗日函数可以得到
J ( W ) = t r ( W T X X T W + λ ( W T W − I ) ) J(W) = tr( W^TXX^TW + \lambda(W^TW-I)) J(W)=tr(WTXXTW+λ(WTWI))

  对W求导有 X X T W + λ W = 0 XX^TW+\lambda W=0 XXTW+λW=0, 整理下即为:
X X T W = ( − λ ) W XX^TW=(-\lambda)W XXTW=λW

  和上面一样可以看出,W为 X X T XX^T XXT的n’个特征向量组成的矩阵,而 − λ -\lambda λ X X T XX^T XXT的若干特征值组成的矩阵,特征值在主对角线上,其余位置为0。当我们将数据集从n维降到n’维时,需要找到最大的n’个特征值对应的特征向量。这n’个特征向量组成的矩阵W即为我们需要的矩阵。对于原始数据集,我们只需要用 z ( i ) = W T x ( i ) z^{(i)}=W^Tx^{(i)} z(i)=WTx(i),就可以把原始数据集降维到最小投影距离的n’维数据集。

5. PCA算法流程

  从上面两节我们可以看出,求样本 x ( i ) x^{(i)} x(i)的n’维的主成分其实就是求样本集的协方差矩阵 X X T XX^T XXT的前n’个特征值对应特征向量矩阵W,然后对于每个样本 x ( i ) x^{(i)} x(i),做如下变换 z ( i ) = W T x ( i ) z^{(i)}=W^Tx^{(i)} z(i)=WTx(i),即达到降维的PCA目的。

  下面我们看看具体的算法流程。

  输入:n维样本集 D = ( x ( 1 ) , x ( 2 ) , . . . , x ( m ) ) D=(x^{(1)}, x^{(2)},...,x^{(m)}) D=(x(1),x(2),...,x(m)),要降维到的维数n’.
  输出:降维后的样本集 D ′ D' D

  1 ) 对所有的样本进行中心化: x ( i ) = x ( i ) − 1 m ∑ j = 1 m x ( j ) x^{(i)} = x^{(i)} - \frac{1}{m}\sum\limits_{j=1}^{m}x^{(j)} x(i)=x(i)m1j=1mx(j)
  2 ) 计算样本的协方差矩阵 X X T XX^T XXT
  3 ) 对矩阵 X X T XX^T XXT进行特征值分解
  4 ) 取出最大的n’个特征值对应的特征向量 ( w 1 , w 2 , . . . , w n ′ ) (w_1,w_2,...,w_{n'}) (w1,w2,...,wn), 将所有的特征向量标准化后,组成特征向量矩阵W。
  5 ) 对样本集中的每一个样本 x ( i ) x^{(i)} x(i),转化为新的样本 z ( i ) = W T x ( i ) z^{(i)}=W^Tx^{(i)} z(i)=WTx(i)
  6 ) 得到输出样本集 D ′ = ( z ( 1 ) , z ( 2 ) , . . . , z ( m ) ) D' =(z^{(1)}, z^{(2)},...,z^{(m)}) D=(z(1),z(2),...,z(m))

  有时候,我们不指定降维后的n’的值,而是换种方式,指定一个降维到的主成分比重阈值t。这个阈值t在(0,1]之间。假如我们的n个特征值为 λ 1 ≥ λ 2 ≥ . . . ≥ λ n \lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n λ1λ2...λn,则n’可以通过下式得到:
∑ i = 1 n ′ λ i ∑ i = 1 n λ i ≥ t \frac{\sum\limits_{i=1}^{n'}\lambda_i}{\sum\limits_{i=1}^{n}\lambda_i} \geq t i=1nλii=1nλit

6. PCA实例

  下面举一个简单的例子,说明PCA的过程。

  假设我们的数据集有10个二维数据(2.5,2.4), (0.5,0.7), (2.2,2.9), (1.9,2.2), (3.1,3.0), (2.3, 2.7), (2, 1.6), (1, 1.1), (1.5, 1.6), (1.1, 0.9),需要用PCA降到1维特征。

  首先我们对样本中心化,这里样本的均值为(1.81, 1.91),所有的样本减去这个均值后,即中心化后的数据集为(0.69, 0.49), (-1.31, -1.21), (0.39, 0.99), (0.09, 0.29), (1.29, 1.09), (0.49, 0.79), (0.19, -0.31), (-0.81, -0.81), (-0.31, -0.31), (-0.71, -1.01)。

  现在我们开始求样本的协方差矩阵,由于我们是二维的,则协方差矩阵为:
X X T = ( c o v ( x 1 , x 1 ) c o v ( x 1 , x 2 ) c o v ( x 2 , x 1 ) c o v ( x 2 , x 2 ) ) \mathbf{XX^T} = \left( \begin{array}{ccc} cov(x_1,x_1) & cov(x_1,x_2)\\ cov(x_2,x_1) & cov(x_2,x_2) \end{array} \right) XXT=(cov(x1,x1)cov(x2,x1)cov(x1,x2)cov(x2,x2))

  对于我们的数据,求出协方差矩阵为:
X X T = ( 0.616555556 0.615444444 0.615444444 0.716555556 ) \mathbf{XX^T} = \left( \begin{array}{ccc} 0.616555556 & 0.615444444\\ 0.615444444 & 0.716555556 \end{array} \right) XXT=(0.6165555560.6154444440.6154444440.716555556)

  求出特征值为(0.0490833989, 1.28402771),对应的特征向量分别为: ( 0.735178656 , 0.677873399 ) T      ( − 0.677873399 , − 0.735178656 ) T (0.735178656, 0.677873399)^T\;\; (-0.677873399, -0.735178656)^T (0.735178656,0.677873399)T(0.677873399,0.735178656)T,由于最大的k=1个特征值为1.28402771,对于的k=1个特征向量为 ( − 0.677873399 , − 0.735178656 ) T (-0.677873399, -0.735178656)^T (0.677873399,0.735178656)T. 则我们的W= ( − 0.677873399 , − 0.735178656 ) T (-0.677873399, -0.735178656)^T (0.677873399,0.735178656)T

  我们对所有的数据集进行投影 z ( i ) = W T x ( i ) z^{(i)}=W^Tx^{(i)} z(i)=WTx(i),得到PCA降维后的10个一维数据集为:(-0.827970186, 1.77758033, -0.992197494, -0.274210416, -1.67580142, -0.912949103, 0.0991094375, 1.14457216, 0.438046137, 1.22382056)

7. 核主成分分析KPCA介绍

  在上面的PCA算法中,我们假设存在一个线性的超平面,可以让我们对数据进行投影。但是有些时候,数据不是线性的,不能直接进行PCA降维。这里就需要用到和支持向量机一样的核函数的思想,先把数据集从n维映射到线性可分的高维N>n,然后再从N维降维到一个低维度n’, 这里的维度之间满足n’<n<N。

  使用了核函数的主成分分析一般称之为核主成分分析(Kernelized PCA, 以下简称KPCA。假设高维空间的数据是由n维空间的数据通过映射 ϕ \phi ϕ产生。

  则对于n维空间的特征分解:
∑ i = 1 m x ( i ) x ( i ) T W = λ W \sum\limits_{i=1}^{m}x^{(i)}x^{(i)T}W=\lambda W i=1mx(i)x(i)TW=λW

  映射为:
∑ i = 1 m ϕ ( x ( i ) ) ϕ ( x ( i ) ) T W = λ W \sum\limits_{i=1}^{m}\phi(x^{(i)})\phi(x^{(i)})^TW=\lambda W i=1mϕ(x(i))ϕ(x(i))TW=λW

  通过在高维空间进行协方差矩阵的特征值分解,然后用和PCA一样的方法进行降维。一般来说,映射 ϕ \phi ϕ不用显式的计算,而是在需要计算的时候通过核函数完成。由于KPCA需要核函数的运算,因此它的计算量要比PCA大很多。

8. PCA算法总结

  这里对PCA算法做一个总结。作为一个非监督学习的降维方法,它只需要特征值分解,就可以对数据进行压缩,去噪。因此在实际场景应用很广泛。为了克服PCA的一些缺点,出现了很多PCA的变种,比如第六节的为解决非线性降维的KPCA,还有解决内存限制的增量PCA方法Incremental PCA,以及解决稀疏数据降维的PCA方法Sparse PCA等。

  PCA算法的主要优点有:
   1 ) 仅仅需要以方差衡量信息量,不受数据集以外的因素影响。
   2 ) 各主成分之间正交,可消除原始数据成分间的相互影响的因素。
   3 ) 计算方法简单,主要运算是特征值分解,易于实现。

  PCA算法的主要缺点有:
   1 ) 主成分各个特征维度的含义具有一定的模糊性,不如原始样本特征的解释性强。
   2 ) 方差小的非主成分也可能含有对样本差异的重要信息,因降维丢弃可能对后续数据处理有影响。


(欢迎转载,转载请注明出处 刘建平Pinard:https://www.cnblogs.com/pinard/p/6239403.html)

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值