翻译_第三章:《Explainable Recommendation: A Survey and New Perspectives》可解释推荐系统综述

上篇链接:翻译_第二章:《Explainable Recommendation: A Survey and New Perspectives》可解释推荐系统综述


3.Explainable Recommendation Models

  许多流行的可解释推荐方法都是基于模型的方法,即推荐和解释都是由一个可解释的模型提供的。该模型可以基于矩阵/张量分解、因式分解机、主题建模或深度学习进行设计。在本节中,我们将介绍基于模型的可解释推荐方法。

3.1 Overview of Machine Learning for Recommendation

  基于模型的可解释推荐研究与机器学习推荐系统有着密切的关系。在本节中,我们首先对机器学习的个性化推荐进行简要概述。
  基于矩阵因子分解(MF)的潜在因子模型(LFM)是最经典的推荐模型之一。它通过学习潜在因素来预测用户-物品评分矩阵中缺失的评分。典型的矩阵分解方法包括

  • Singular Value Decomposition (SVD) (Koren et al., 2009; Koren, 2008; Srebro and Jaakkola, 2003)
  • Non-negative Matrix Factorization (NMF) (Lee and Seung, 1999; Lee and Seung, 2001)
  • Max-Margin Matrix Factorization (MMMF) (Srebro et al., 2005; Rennie and Srebro, 2005)
  • Probabilistic Matrix Factorization (PMF) (Mnih and Salakhutdinov, 2008; Salakhutdinov and Mnih, 2008)
  • Localized Matrix Factorization (LMF) (Zhang et al., 2013b; Zhang et al., 2013a)

矩阵分解方法也通常被称为point-wise预测,它们经常被用于预测用户的显式反馈,例如电子商务或电影评论网站中的数字评分。
   Pair-wise学习排序经常被用来学习基于隐式反馈中正确的物品排序。例如,Rendle et al., 2009 提出贝叶斯个性化排序(BPR)学习购买物品(positive item)相对于未购买物品(negative item)的相对排序。Rendle and Schmidt-Thieme, 2010 进一步将该思想扩展到张量因式分解,以建立成对相互作用的模型。在协同过滤中,除了采用pair-wise学习进行排序外,Shi et al., 2010 还采用了基于矩阵分解的list-wise学习进行排序。
   深度学习和表示学习在推荐研究中也备受关注。例如,Cheng et al., 2016 提出了Wide and Deep Network,将浅层回归和多层神经网络相结合用于推荐系统。深度神经网络也应用于现实世界的商业系统,如Youtube推荐系统(Covington et al., 2016)。此外,研究人员还探索了各种深层结构和信息模式以供推荐,相关研究工作包括基于文本的卷积神经网络(Zheng et al., 2017),基于图像的卷积神经网络(Chen et al., 2019b),基于用户行为序列的循环神经网络(Hidasi et al., 2016),基于自动编码器(Wu et al., 2016)以及基于记忆网络(Chen et al., 2018c)。
   虽然由于深度学习近年来比较热门,这一方向产生了许多研究工作,但我们需要承认神经模型在推荐系统研究中是否真的取得进展是具有争议的(Dacrema et al., 2019)。深度模型再有足够的数据可供训练时才会发挥作用,比如一些研究数据集或工业场景下的辅助信息、知识图谱 (Zhang et al.,2019)。然而,推荐性能并不是本次调查的重点,我们更关注深度模型的可解释性方面。可解释的推荐领域已经有了许多深度模型,我们将在下面的小节中介绍这些模型。

3.2 Factorization Models for Explainable Recommendation

  在这一节中,我们将介绍矩阵/张量分解和因式分解机是如何用于可解释的推荐的。许多基于矩阵分解的可解释推荐模型被提出。矩阵分解方法,或着用更一般的说法——latent factor models,其一个常见问题是,用户或物品的嵌入维度是潜在的。通常,我们假定用户和项目的表示向量嵌入在一个低维空间中,其中每个维度代表一个影响用户决策的特定因素。然而,对于每个因素的确切含义的不确定导致预测或推荐难以解释。
  为了解决这个问题,Zhang et al., 2014a 提出了显式因子模型(EFM),其基本思想是推荐在用户偏好特征上表现良好的产品,如图3.1所示。具体来说,该方法从用户评论中提取出产品的显式特征(图a),然后将矩阵分解的每个潜在维度与显式特征进行对齐(图b),使得分解和预测过程可以被追踪,从而提供显式的解释——“The product is recommended because you are interested in a [particular feature], and this product performs well on the [feature]”,增加了推荐系统的可信度。Zhang et al., 2015b在此基础上进行扩展,由于用户对物品特征的偏好是动态的(随着时间的推移而变化),该工作根据daily resolution动态建模用户的偏好特征。
3.1 显式因子模型概述
  Chen et al., 2016 进一步将EFM扩展到张量分解。特别地,作者从文本评论中提取产品特征,并构建user-item-feature的多维结构。基于这个多维结构进行pair-wise排序学习,以预测用户对特征和物品的偏好。该模型通过同时考虑多产品类别进一步扩展,有助于缓解数据稀疏性问题,如图3.2(a)所示。
  Wang et al., 2018b 进一步将基于矩阵分解的可解释推荐推广到基于张量的多任务学习中。其中,通过一个联合张量分解的框架,将“用于推荐的用户偏好建模”和“用于解释的自定义内容建模”两个配套学习任务进行集成,如图3.2(b)所示。该算法不仅可以预测用户对一组产品的偏好(即推荐结果),还可以预测用户在特征级别上对某一特定产品的评价(即自定义的文本解释)。
在这里插入图片描述
  用户对于不同物品的特征偏好分布可能是不同的,而上述方法假定了每个用户都有一个全局的特征偏好分布(对每个产品的特征偏好都是相同的)。为了改进这种缺点,Chen et al., 2018b 提出了一种注意力驱动的因子模型(Attention-driven Factor Model, AFM),该模型在不同物品特征上学习并调整用户的注意力分布,该注意力分布同时也可以作为推荐的解释。
  为了分析潜在因素模型中的输入(用户历史行为)和输出(推荐项目)之间的关系,Cheng et al., 2019 的LFMs中采用了对可解释推荐的影响分析(influence analysis)。特别地,作者通过将每个预测追溯到模型的训练数据,将可解释性合并到LFMs中,并进一步为预测提供直观的邻域式解释。我们将在之后的小节中提供更多关于这项工作的细节,在那节中将专门讨论与模型无关的和后处理可解释的推荐。
  从评论中提取的特征也可以作为解释推荐给用户。Bauman et al., 2017 提出了Sentiment Utility Logistic Model (SULM),它提取特征(即aspect)和用户对这些特征的情感,将二者整合到矩阵分解模型中,从而回归最终生成推荐的未知评分。该方法不仅提供了物品推荐,还提供了每个物品的特征作为推荐解释。例如,该方法可以推荐餐厅以及用户可以选择的最重要的aspect,例如去餐厅的时间(例如午餐或晚餐),以及要点的菜(例如海鲜)。Qiu et al., 2016 和 Hou et al., 2018 也通过整合评分和评论,研究了基于特征的潜在因子推荐模型。
  潜在因子模型还可以与其他结构化数据集成,以获得更好的推荐和解释能力,比如树结构或图结构。Tao et al., 2019a 提出了一种基于因子分解树的可解释性潜在因子模型。作者通过整合回归树来指导潜在因子模型的学习,并使用学习树的结构来解释产生的潜在因子。特别地,作者使用用户生成的评论在用户和物品上构建回归树,并将一个latent profile与树中的每个节点关联起来,以表示用户和物品。随着回归树的生长,潜在因子在树结构的正则化作用下得到细化。因此,我们可以通过查看回归树中每个因子的路径来跟踪潜在latent profile的生成,从而解释产生的推荐。
  研究者们还探索了基于模型的方法来生成relevant-user或relevant-item解释,这些方法仅基于用户-物品评价矩阵提供可解释推荐(参见图3.3)。具体而言,Abdollahi and Nasraoui, 2016; Abdollahi and Nasraoui, 2017 描述了可解释推荐的Explainable Matrix Factorization (EMF)。该模型生成relevant-user解释,其中推荐的商品被解释为“许多与您相似的用户购买了该商品”。为了实现这一目标,作者在矩阵分解的目标函数中增加了一个将“可解释性正则化器”。在用户的许多邻居也购买了该物品的情况下,该可解释性正则化器使得用户潜在向量和物品潜在向量彼此接近。通过这种方式,该模型选择那些用户邻居经常购买的商品作为推荐,同时保持了较高的评分预测精度。
3.3

3.3 Topic Modeling for Explainable Recommendation

  基于可用的文本信息,特别是电子商务中广泛使用的文本评论,主题建模方法也被广泛用于生成推荐解释。在这些方法中,用户通常可以通过主题词云的形式得到直观的解释(McAuley and Leskovec, 2013; Wu and Ester, 2015; Zhao et al., 2015)。在本节中,我们将回顾可以归入此方法的相关工作。
  McAuley and Leskovec, 2013 提出了基于从评论中学习到的潜在主题来理解LFM模型中的潜在因子。作者提出了Hidden Factor and Topic(HFT)模型,它将潜在因子模型(LFM)和Latent Dirichlet Allocation (LDA)联系起来,将潜在向量的每个维度与LDA主题分布向量的一个维度联系起来,通过考虑用户评论提高了评分预测的精度。此外,通过将每个用户的潜在向量投射到LDA的潜在主题空间中,可以帮助理解为什么用户对目标物品进行特定的评分,例如我们可以检测用户喜欢的最重要的主题。
  遵循这一思路,Tan et al., 2016 提出在统一的语义空间中对物品推荐度和用户偏好进行建模,如图3.4(a)所示。在该模型中,每个物品都嵌入为一个主题推荐性分布向量。类似地,每个用户都基于其历史评分被嵌入到相同的主题推荐空间中。最后将推荐度和偏好分布集成到一个潜在的因子分解框架中,用以满足真实数据。在该模型中,推荐解释可以通过显示推荐度得分最高的主题词来得到。
3.4
  研究人员还调查了LDA之外的其他概率图模型,以获得可解释推荐。Wu and Ester, 2015 研究了基于物品aspect的个性化情感评估问题。特别地,作者提出FLAME模型(Factorized Latent Aspect Model),其结合了协同过滤和基于aspect的观点挖掘两种方法的优点。它根据评论学习每个用户在不同物品aspect的个性化偏好,如图3.5(a)所示。基于此,它通过群体智能来预测用户对新物品的特征评分。结果表明,该方法在TripAdvisor上有效地提高了酒店的推荐质量。此外,对于每个酒店的推荐,可以提供一个酒店特征的词云作为解释,如图3.5(b)所示:每个特征的显示大小与用户对于特征的情感成正比。
3.5
  Zhao et al., 2015 设计了一个概率图模型,将情感、aspect和区域信息整合到一个统一的框架中,以提高POI推荐的性能和可解释性。这些解释是由每个用户对于 topical-aspect的偏好决定的,这与McAuley and Leskovec, 2013 提出的主题聚类相似,不同的是该模型提供针对每个聚类的情感以生成推荐解释。Ren et al., 2017 利用主题聚类进行社交的可解释推荐。特别地,作者提出了social-collaborative viewpoint regression(sCVR)。如图3.4(b)所示,“viewpoint”被定义为一个概念、主题和情感标签(来自用户评论和可信社会关系)的元组,并用于推荐解释。作者提出了一种基于viewpoint的概率图模型以提高预测精度,与前面的工作类似,推荐解释是基于嵌入在viewpoint中用户最喜欢的主题生成的。

3.4 Graph-based Models for Explainable Recommendation

  许多user-user 或 user-item关系可以表示为图,特别是在社交网络场景中。在本节中,我们将介绍如何基于图的学习方法(如基于图的传播、图聚类和图神经网络)生成可解释的推荐。
  He et al., 2015 在top-N推荐中引入了三部图结构来建模user-item-aspect三元关系,如图3.6所示。其中,aspect是从用户评论中提取的物品特征。作者提出了一种通用的三部图顶点排序算法TriRank,该算法对节点排序和个性化推荐采用平滑性和拟合约束。其中,通过与目标用户和推荐物品匹配的排序最靠前的aspects生成推荐解释。
3.6
  在没有使用诸如aspect等外部信息的情况下,Heckel et al.,2017 基于用户-物品二部图进行重叠聚类,实现可解释的推荐。在每个聚类中,用户具有相似的兴趣,物品具有相似的属性,如图3.7所示。解释是基于用户的协同信息生成的,如“Item A is recommended to Client X with confidence α, because Client X has purchased Item B,C, and D, while clients with similar purchase history (such as Clients Y and Z) also bought Item A”.如果一个user-item pair落在多个聚类中,那么我们可以从每个聚类中生成多个基于用户和基于物品的解释。
3.7
  作为一种特殊类型的图,树结构还可以帮助生成可解释的推荐。Wang et al., 2018c 提出了可解释推荐的tree-enhanced embedding模型,该模型结合了基于嵌入模型的泛化能力和基于树模型的可解释性。在这个模型中,作者首先使用了一个基于树的模型来学习明确的决策规则。该决策规则基于从辅助信息中提取的交叉特征。然后,作者设计了一个包含显式交叉特征的嵌入模型,并将其推广到基于协同学习的不可见的用户或物品的交叉特征中。针对解释生成,该研究采用注意力网络来发现推荐过程中最重要的决策规则。
  基于图的可解释推荐也经常用于社交推荐场景,因为社交网络本身就是一个图结构。例如,第2节中介绍的UniWalk算法(Park et al.,2018)就是一种基于图的可解释推荐算法。它利用评分和社交网络来生成可解释的产品推荐。在该算法中,推荐可以基于目标用户在图上有相似偏好的朋友来进行解释。

3.5 Deep Learning for Explainable Recommendation

  最近,研究人员利用深度学习和表示学习来实现可解释推荐。深度可解释推荐模型涵盖了广泛的深度学习技术,包括 CNN (Seo et al., 2017; Tang and Wang, 2018), RNN/LSTM(Donkers et al., 2017), attention mechanism (Chen et al., 2018a), memory networks (Chen et al., 2018c; Tao et al., 2019b), capsule networks(Li et al., 2019)等等。它们还适用于不同的可解释推荐任务,如评分预测、top-N推荐和序列推荐。基于自然语言生成模型,系统可以不使用解释模板而自动生成解释语句(Seo et al.,2017; Li et al., 2017; Chen et al., 2019a)。在本节中,我们将回顾可解释推荐的深度学习方法。
  Seo et al., 2017提出在评论文本上采用卷积神经网络(CNNs),建模用户偏好和物品属性。它使用于双重注意力(local & global)生成解释,如图3.8所示。在预测用户-物品评分时,该模型会有选择地选取不同注意力权重的评论词语。根据学习到的注意力权重,该模型可以显示出评论的哪一部分对输出结果更加重要,从而通过突出评论中的重要单词作为推荐解释,以帮助用户理解推荐(图b)。
3.8
  类似地,Wu et al., 2019 将user-item交互和评论信息结合在一个统一的框架中。基于用户评论生成内容特征,通过与用户和物品嵌入进一步集成以预测最终的评分。Lu et al., 2018 提出了一种基于用户和商品信息的深度推荐模型。它联合优化一个矩阵分解模块(通过评分)和一个基于注意力的GRU网络(通过评论),从而对齐从评分和评论中学习的特征。在Wu et al., 2019 和 Luet al., 2018,的研究中,评论词语的注意力权重被用来解释推荐。Gao et al., 2019 提出了一种基于注意力+多视图学习的可解释推荐模型,旨在解决可解释机器学习中解释性与精确性之间的权衡问题。其基本思想是建立一个基于深度层次结构的初始网络(如Microsoft Concept Graph),通过优化层次结构中的关键变量(如节点重要性和相关性)来提高模型的准确性。该模型输出类似于Zhang et al., 2014a 中提供特征级别的解释,但该模型中的特征是通过显式的特征层次结构进行回溯的。
  与以上突出显示评论词语不同,Costaet al., 2018 提出了一种基于character-level RNN的自然语言解释自动生成方法。该模型将用户评分连接到输入模块中作为辅助信息,使模型能够根据预期的评分(情感)生成评论。与许多基于预定义模板生成解释的可解释推荐模型不同,该模型能够以自然语言的方式自动生成解释。通过选择不同的参数,模型可以产生不同的解释来吸引用户,如图3.9(a)所示。 Li et al.,2017 提出了一个类似但更全面的模型来生成Tips,相比于长评论而言,每个Tip都是一个简短的总结句。这些Tips也可以用作推荐的解释。Chen et al., 2019a 结合自然语言生成方法和特征词生成方法,提出了一种主题情感生成模型,针对特定的特征词语进行解释。在某种程度上,该模型可以控制生成的解释所涉及的物品特征。 受认知心理学中人类信息处理模型的启发,Chen et al., 2019d开发了一种encoder-selector-decoder架构,该架构利用了推荐任务与解释任务之间的相互关系,通过共同注意力(co-attentive)的多任务学习来实现。该模型不仅提高了推荐任务的预测精度,而且生成了流畅、实用、高度个性化的语言解释。
3.9
  Chang et al., 2016 提出了另一种生成自然语言解释的方法,该方法基于人类用户和众包。作者认为,算法生成的解释可能过于简单和没有说服力,而人类可以克服这些限制。受人们如何解释口碑推荐的启发,作者设计了一个将众包和计算结合起来生成解释的流程。他们首先基于非监督学习方法提取电影的主题特征,然后为主题特征生成自然语言解释。更具体地说,作者收集了每个方面的相关评论引用,然后请大众工作者将这些引用合成为解释。最后,作者根据用户的活动建立用户偏好模型,并以个性化的方式给出解释(如图3.9(b)所示)。实验通过在220名MovieLens用户中进行,对照评估了个性化自然语言解释与个性化标签解释的效率、有效性、信任度和满意度。
  Chen et al., 2018a 没有生成解释,而是选择适当的用户评论作为解释。作者设计了一种针对用户和商品评论的注意力机制来进行评分预测。在本研究中,作者认为他人的评论是用户在电子商务中做出决策的重要参考信息。然而,每个产品包含的大量评论使得消费者难以全面检查所有的评论。因此,为每个产品选择和提供高质量的评论是生成解释的重要部分。特别地,作者介绍了一个注意机制来学习评论有效性,从而将高度有用的评论可以作为解释,帮助用户更快更好地做出决定。
  Chen et al., 2019b 通过对可视化图像和文本评论的联合建模,提出Visually Explainable Recommendation。它突出显示用户感兴趣的图像区域作为推荐解释,如图2.10所示。通过对图像和评论的联合建模,该模型还可以通过对高亮区域的描述来生成自然语言解释(辅助视觉解释)。通过自然语言解释,用户可以更好地理解为什么特定的图像区域被突出显示作为解释。
  凭借explicit memory slots在推理方面优势,记忆网络也被用于可解释的推荐的研究与应用。例如,Chen et al., 2018c 研究了基于记忆网络的可解释序列推荐。它将用户交互历史中的每个物品视为一个memory slot,并在这些slot上开发一个注意力机制来预测随后的用户行为。通过显示用户之前的物品如何以及哪些影响了当前的预测提供了解释。作者进一步提出了基于时间感知Gated Recurrent单元的Dynamic Explainable Recommendation (Chen et al., 2019c) 。Tao et al., 2019b 提出了Log2Intent框架用于可解释的用户建模。它侧重于对用户行为建模,以及从非结构化软件日志跟踪数据预测和解释用户意图。从技术上讲,作者将辅助知识与记忆网络相结合,用于序列建模。注意机制在 memory slots上生成有attended annotations来解释用户日志数据。
  Li et al., 2019 开发了一个胶囊网络方法来解释推荐。它将一个“item aspect – user viewpoint”pair视为一个逻辑单元,用于推理用户的评分行为。该模型从评论中发掘逻辑单元,通过情感分析生成推荐解释。提出了一种具有双向协议路由机制的情感胶囊架构,用于识别评分预测的信息逻辑单元,而每个单元的信息量有助于对预测做出解释。开发可解释推理的胶囊逻辑单元,为可解释推荐系统提供了一种有前途的方法。
  值得注意的是,可解释推荐的深度学习的范围和文献并不局限于本小节介绍的研究。除了基于文本或图像的可解释推荐的深度学习外,可解释/可解释机器学习领域的研究成果也反映在可解释推荐系统中。尽管它们也属于深度学习下的可解释推荐,但其中的许多方法被更适用于划分为其他可解释推荐方法,如例如模型不可知的或后处理的方法。我们将在之后的小节中介绍这些方法。

3.6 Knowledge Graph-based Explainable Recommendation

  知识图谱(KG,知识库)包含了关于用户和物品的丰富信息,可以帮助为推荐物品生成更直观、更有针对性的解释。最近,研究人员一直在探索用于可解释推荐的知识图谱。
  Catherine et al., 2017 提出了一个采用Personalized PageRank对物品和知识图谱实体进行联合排序的方法,该方法同时生成推荐及其解释。该研究针对电影推荐场景,通过将实体与对应电影联合排序,生成一个排序的实体列表作为解释。
  与上述方法通过利用KG规则和程序的可解释推荐不同,Ai et al., 2018 采用KG嵌入进行可解释推荐,如图3.10所示。作者构建了一个user-item知识图谱,其中包含了“user purchase item”、“item belong to category”等各种用户、物品和实体关系(图a)。在图上学习KG嵌入,以获得每个用户、物品、实体和关系的嵌入。为了确定用户的推荐结果,模型会在购买关系中找到最相似的商品。此外,还可以通过在KG上查找用户到推荐商品的最短路径来进行推荐解释(图b)。
3.10
  Wang et al., 2018a 提出一个端到端的框架Ripple Network,以合并KG和推荐系统。如同水面上传播的涟漪,Ripple Network激活用户对知识实体偏好的传播。它通过KG中的links自动、迭代地扩展用户的潜在兴趣。因此,由用户以前单击过的物品所激活的多个“ripples”被叠加起来,形成用户对候选物品的偏好分布。该分布可用于预测用户最终的单击概率,还可以通过在知识图谱上查找来自用户和推荐物品间的路径来提供解释。
  Huang et al., 2018 在序列推荐场景下使用KG来提供更好的可解释性。作者将RNN与Key-Value Memory Networks(KV-MN)桥接,以用于序列推荐。RNN模块用于捕获用户对物品的序列偏好,而记忆网络模块使用物品知识进行增强,以捕获用户基于属性的偏好。最后,将序列偏好和属性级偏好组合起来作为用户偏好的最终表示。为了解释推荐,模型检测那些在预测推荐物品时生效的属性。例如,对于一个特定的音乐推荐,它可以检测出专辑属性更重要还是歌手属性更重要,其中属性来自外部知识图谱。该模型进一步提供了value-level的可解释性,假设我们已经知道某些属性(如album)在决定推荐时起着关键作用,那么该模型进一步预测了不同value对该属性的重要性。
  为了结合机器学习和归纳规则学习的优势,Ma et al., 2019 提出了一个联合学习框架,将KG中explainable rule induction与rule-guided neural model相结合。该框架鼓励两个模块在生成可解释推荐时相互补充。其中一个模块是基于从物品知识图谱中挖掘出的归纳规则。这些规则总结了用于推理物品关联的常见多跳关系模式,并为模型预测提供了人类可读的解释。第二个是推荐模块,通过归纳规则对推荐模块进行扩充。KG归纳规则被转换成解释,将推荐的商品与用户的购买历史联系起来。
  现实中的知识图谱通常是巨大的。如果枚举user-item节点之间的所有路径以进行相似性计算,通常在计算上是不可能实现的。为了解决这个问题,Xian et al., 2019 提出了一种基于知识图谱的可解释推荐的强化推理方法,如3.11所示。其关键思想是训练一种用于搜索路径的强化学习agent。在训练阶段,agent从一个用户开始,在达到正确物品后将获得high reward。因此,在推理阶段,agent将直接遍历正确的推荐物品,而不必枚举user-item对之间的所有路径。
  3.11 Policy-Guided Path Reasoning 用于可解释推荐

3.7 Data Mining for Explainable Recommendation

  数据挖掘方法是推荐研究的关键。对于可解释的推荐,它们通常具有特殊的优势。因为在许多情况下,它们可以为用户生成非常简单的解释。用于可解释推荐的最常用的数据挖掘技术是关联规则挖掘(Agrawal et al.,1993; Agarwal, Srikant, et al., 1994)。一个非常经典的例子是源于数据挖掘研究的啤酒尿布推荐。
  例如,Mobasher et al., 2001利用关联规则挖掘实现高效的大规模网页推荐。Cho et al., 2002针对基于web的商店推荐将决策树与关联规则挖掘相结合。Smyth et al., 2005 采用apriori关联规则挖掘来帮助计算物品之间的相似性,并将关联规则挖掘应用于会话推荐任务。Sandvig et al.,2007 研究了基于关联规则挖掘的协同推荐算法的鲁棒性。Zhang et al., 2015a 将用户需求序列定义为web浏览任务,通过分析用户浏览日志,他们利用频繁模式挖掘来获得基于任务的推荐。Amatriain and Pujol, 2015,提供了数据挖掘用于个性化推荐系统的综述。
  在可解释的推荐方面,Lin et al., 2000; Lin et al.,2002 研究了推荐系统的关联规则。特别地,作者提出了一种“个性化”的关联规则挖掘技术,为目标用户提取关联规则。用户和物品间的关联用于推荐,这些推荐通常由产生它们的关联规则自行解释,例如:“90% of the articles liked by user A and user B are also liked by user C”。
  Davidson et al., 2010 介绍了YouTube视频推荐系统。作者考察了用户在网站上观看行为的sessions。在给定的时间段内(通常为24小时),作者采用关联规则挖掘来计算每对视频(vi, vj)在同一session时段内被共同观看的频率,这有助于计算每对视频的关联度分数。为了提供个性化的推荐,作者考虑为每个用户设置一个视频种子集,其中包括用户最近观看的视频,以及用户明确收藏、喜欢、评分或添加到播放列表中的视频。这些种子视频的相关视频作为推荐物品。同时,种子视频以及触发推荐的关联规则作为推荐的解释,如图3.12所示。
3.12 一个关于“个性化推荐”模块的YouTube主页截图
  最近,Balog et al., 2019 提出了一种基于集合的具有透明性、可审查性和可解释性的推荐方法。请注意,尽管我们在可解释推荐部分的数据挖掘中讨论了这项工作,但所提出的方法是一个框架,可以根据物品先验的估计方式将其推广到机器学习模型。该模型假设用户偏好可以由一个由标签或关键字组成的集合来描述。这些标签可以是由用户提供(社交标签)的或自动提取的。给定特定物品的显式评分,它通过聚合与标签关联的物品来推断用户对于集合的偏好。这种基于集合的用户偏好模型使模型能够透明地生成物品推荐。在解释偏好时,模型选择句子级别的文本解释,能够让用户能够对单个句子提供反馈,从而提供了可审查性。对用户偏好的任何修改都会立即产生影响,从而使用户能够更直接地控制他们获得的推荐。

3.8 Model Agnostic and Post Hoc Explainable Recommendation

  有时推荐机制过于复杂,难以解释。在这种情况下,我们依赖于后处理的或与模型无关的方法来解释推荐。在这些方法中,推荐和解释是由不同的模型生成的——一个解释模型(独立于推荐机制)在提供推荐之后为推荐模型提供解释(因此是“后处理的”)。
  例如,在许多电子商务系统中,商品推荐是基于非常复杂的混合推荐方法,但是在商品被推荐之后,我们可以提供一些简单的统计信息作为解释,例如,“70% of your friends bought this item”。通常,我们根据数据挖掘方法(如频繁项集挖掘和关联规则挖掘)预先定义几个可能的解释模板,然后根据最大置信度等后处理统计信息决定要显示哪些解释。
  Peake and Wang, 2018 提供了一种关联规则挖掘方法来处理后处理可解释推荐。作者将一个任意的推荐模型——在该文中是一个矩阵分解模型——作为一个黑盒。对于任何用户,推荐模型都将用户历史记录作为输入并输出推荐。输入和输出构成一个事务,所有用户的事务都用来提取关联规则。关联规则可以用来解释黑箱模型所生成的推荐——如果黑箱模型所推荐的物品也可以从关联规则中推荐出来,那么我们就说这个物品可以用该规则来解释,如“{X ⇒ Y }: Because you watched X, we recommend Y”。作者还采用了fidelity(保真度)来评价后处理解释模型,这个参数显示了该模型可以解释物品的百分比。
  Singh and Anand, 2018 研究了基于网络搜索的学习排序算法的后处理解释。在这项工作中,作者关注于以一种模型不可知的方式理解排序器的决定,而排序的可解释性是基于一个可解释特征空间。从技术上讲,作者首先训练一个黑盒排序器,然后使用排序器产生的排序标签作为二次训练数据,用于训练一个可解释的基于树的模型。基于树的模型是为排序列表生成解释的后处理解释模型。从这个意义上讲,Peake and Wang, 2018 可以被认为是一个point-wise的后处理解释模型,而Singh and Anand, 2018 是一个pair-wise或list-wise的后处理解释模型。
  McInerney et al., 2018 为可解释推荐开发了一个Bandit方法。作者提出用户对解释的响应是不同的、动态的,因此,一种基于Bandit的exploitation-exploration 权衡方法将有助于为每个用户找到最佳解释序列。特别地,他们提出了一些方法来共同学习每个用户对哪些解释做出了响应,哪些内容是为每个用户推荐的最佳内容,以及如何在exploration with exploitation之间取得平衡,以应对不确定性。实验表明,解释影响用户对推荐的响应方式,所提出的方法优于最佳静态解释排序。这项工作表明,exploitation-exploration不仅有利于推荐任务,也有利于解释任务。
  Wang et al., 2018d 提出了一种模型不可知的强化学习框架,可以为任何推荐模型生成句子解释(图3.13)。在设计中,被解释的推荐模型是环境的一部分,而agent负责生成解释并根据解释预测推荐模型的输出评分。agents将推荐模型视为一个黑盒(与模型无关),并与环境交互。如果agents能够正确预测推荐模型的输出评分(模型可解释性),那么环境就会奖励agent。基于对合适解释的一些先验知识(如合适的长度),如果解释具有良好的表示质量(解释质量控制),环境也会奖励agent。agent通过优化其行为的预期奖励来学习生成具有良好解释能力和表示质量的解释。通过这种方式,推荐模型强化了解释模型,从而获取更好的后处理解释。
3.13 一个用于生成推荐解释的强化学习框架
  Cheng et al., 2019 对基于影响分析的后处理可解释推荐提供了数学理解。影响函数源于稳健统计,已被用来了解训练点对黑箱模型预测的影响。受此启发,作者提出了一种解释方法FIA (Fast Influence Analysis),通过追踪带有影响函数的训练数据,帮助理解训练后的潜在因素模型的预测。作者展示了如何使用影响函数来测量user-item历史交互对LFMs预测结果的影响,并基于最具影响力的交互提供了直观的邻域式解释。
  总的来说,后处理可解释推荐方法试图开发一个解释模型来解释黑箱预测模型。虽然解释可能并不严格遵循生成推荐的确切机制(即,解释的保真度可能是有限的),但它们在应用于不同推荐模型的灵活性方面具有一定的优势。

3.9 Summary

  在本章中,我们介绍了一些在可解释推荐中具代表性的方法。我们首先对个性化推荐系统的机器学习进行了概述,然后,我们主要关注推荐方法,包括矩阵/ 张量分解方法,主题建模方法,基于图的模型,深度学习方法,知识图谱方法、数据挖掘方法,后处理/模型不可知方法。
  可解释推荐研究可以考虑推荐方法和推荐结果的可解释性。在考虑方法的可解释性时,可解释推荐的目的是设计可解释的模型来增加透明度,而这些模型往往直接产生结果的可解释性。在本章中,许多基于分解、主题建模、基于图、深度学习、基于知识和数据挖掘的方法都采用了这种理念——它们的目标是了解这个过程是如何运作的。
  可解释推荐研究的另一个理念是:只关注推荐结果的可解释性。这种方式将推荐模型视为一个黑盒,并且开发单独的模型来解释这个黑盒产生的推荐结果。在本节中,后处理/模型不可知方法采用了这种理念。
  有趣的是,这两种建模理念都植根于人类认知科学。有时,人类会根据仔细的逻辑推理来做决定,所以他们可以通过一步一步地展示推理过程来清楚地解释决定是如何做出的。在这种情况下,决策模型是透明的,并且决策/解释模型是统一的。其他时候,人们会先做出直觉上的决策,然后“寻求”对决策的解释,这属于后处理解释法。很难说哪种针对可解释的推荐的研究理念——以及广义上可解释的人工智能——才是正确的方法(或许两者都是)。在人类认知科学和对人类大脑如何工作的理解上取得重大突破后,我们才能清楚回答这个问题。

下篇链接:翻译_第四章:《Explainable Recommendation: A Survey and New Perspectives》可解释推荐系统综述

  • 6
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值