1.CRS架构
1.1Dialogue Management System:
这是一个核心环节。
由于CRS实现的是多轮对话,所以可以说这一任务显示或者隐式地实现了某种形式的对话状态管理
①输入:It receives the processed inputs, e.g., the recognized intents,entities and preferences
②操作:correspondingly updates the dialogue state and user model
③输出:using a recommendation and reasoning engine and background knowledge, it determines the next action and returns appropriate content like a recommendation list, an explanation, or a question to the output generation component.
1.2User Modeling System:
can be a component of its own, in particular when there are long-term user preferences to be considered, or not. In some cases, the current preference profile is implicitly part of the dialogue system.
1.3Recommendation and Reasoning Engine
retrieving a set of recommendations, given the current dialogue state and preference model. This component might also implement other complex reasoning functionality, e.g., to generate explanations or to compute a query relaxation
1.4Knowledge Elements.
①Item Database
The Item Database is something that is present in almost all solutions, representing the set of recommendable items, sometimes including details about their attributes.
②different types of Domain and Background Knowledge Many approaches explicitly encode dialogue knowledge in different ways, e.g., in the form of pre-defined dialogue states, supported user intents, and the possible transitions between the states.
2.对于文章第四部分“UNDERLYING KNOWLEDGE AND DATA”的一些思考
2.1 user intents和dialog states
实际上对于一个CRS来说,其支持的user intents可能有:
由于这么多的intents,以及维持多轮对话,最终完成推荐目标,需要有Dialogue States的管理,这可能是采用状态机、对话语法、或一些工具如Google’s DialogFlow等技术,状态之间的转换可能是预先定义好的或者是训练学习到。
只不过我读的论文基本上都是基于端到端训练,基于NLP,所以对话状态管理也被隐式建模到最终的网络模型中了。
“in some NLP-based conversational preference elicitation systems such as References [29, 172], there are mainly two phases: asking questions, in this case in an adaptive way, and presenting a recommendation list.” in the NLP-based end-to-end learning CRS proposed in Reference [75], the dialogue states are in some ways also modeled implicitly, but in a different way. This system is based on a corpus of recorded human conversations (between crowdworkers) centered around movie recommendations. This corpus is used to train a complex neural