关于SVD奇异值分解的公式推导和原理计算这里就不再赘述了,网上有很多的博客都讲解的非常详细,这里只说一下自己对SVD的一些理解,如果有错误的地方烦请网友们指正~
SVD奇异值分解可以将原始矩阵分解成以下形式:
通常情况下数据中会包含很多噪声数据、不相关数据等等,此时
Σ
\Sigma
Σ矩阵对角线上的特征值需要进行取舍以达到对原始数据进行降维的操作,只提取有用的、我们最感兴趣的信息。
对
Σ
\Sigma
Σ对角线上的元素求和可以得到信息量总和,我们一般只需要信息量总和的大约90%的这部分信息量就足够了,因为100%的信息量中可能含有很多噪声数据或者不相关数据。
那么提取到这部分有用信息量我们就可以重构原始矩阵X了,即有如下公式成立:
其中,k是
Σ
\Sigma
Σ矩阵降维后的维数。这么看好像对于原始矩阵X没什么变化,仍然还是mxn维的。对于第一个式子而言,等式右边的SVD分解可以看作是原始空间对X的一种表达方式,而第二个式子右边的SVD分解可以看作是将原始空间的表达方式映射到另外一个空间,而这另外一个空间的SVD分解还是X的一种表达方式,但是这种表达方式只表达了X中最显著的特征。
我们可以看下利用SVD对图像进行压缩降维:
虽然从公式上来看重构之后的X确实在维度上没什么变化,但是从图像本身所隐含的信息来看确实随着提取信息量的占比的变化而变化。
SVD奇异值分解的一些理解
最新推荐文章于 2024-08-13 19:12:47 发布