极大似然估计和贝叶斯估计

极大似然估计 MLE
1、抛硬币实验,不给定正反面的参数,设一个,二项分布。
2、写出出现结果序列的概率
3、求解概率公式,关于参数的函数,求偏导
求参数的极大似然估计
在这里插入图片描述
贝叶斯估计 Bayes
假设知道是0/1之间的均匀分布(我假设的,观察经验,你也可以设置其他的)
1、给定一个你认为合理的参数,给定结果序列
2、写出条件概率公式,贝叶斯公式
在这里插入图片描述
分母是积分常数
在这里插入图片描述

对比
样本量很大:二者一样
在这里插入图片描述
样本量不大:
贝叶斯有优势,不会像MLE那样太为极端(如果只有一个样本,不是等于0就是等于1)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值