极大似然估计 MLE
1、抛硬币实验,不给定正反面的参数,设一个,二项分布。
2、写出出现结果序列的概率
3、求解概率公式,关于参数的函数,求偏导
求参数的极大似然估计
贝叶斯估计 Bayes
假设知道是0/1之间的均匀分布(我假设的,观察经验,你也可以设置其他的)
1、给定一个你认为合理的参数,给定结果序列
2、写出条件概率公式,贝叶斯公式
分母是积分常数
对比
样本量很大:二者一样
样本量不大:
贝叶斯有优势,不会像MLE那样太为极端(如果只有一个样本,不是等于0就是等于1)