Xtuner 简介

XTuner 是由上海人工智能实验室开发的一款低成本大模型训练工具箱。它以高效、灵活和全能的特性,成为轻量化大模型微调的理想选择。借助 XTuner,用户仅需 8GB 显存即可对 InternLM2-7B 模型进行微调,从而定制出独一无二的 AI 助手。这一创新工具极大地降低了微调大型模型的门槛,使得更多研究者和开发者能够轻松地进行个性化 AI 应用的开发。
仓库地址:https://github.com/InternLM/xtuner
Xtuner 特点概览
高效性能
- 大模型支持:Xtuner 能够在仅 8GB 显存的环境下微调 7B 模型,同时支持跨多节点的更大规模模型(70B+)微调。
- 算子加速:自动集成高性能算子,如 FlashAttention 和 Triton kernels,显著提升训练效率。
- 深度优化:与 DeepSpeed 兼容,利用 ZeRO 优化策略,进一步提高训练性能。
灵活适应
- 模型多样性:支持多种大语言模型,包括 InternLM、Mixtral-8x7B、Llama2、ChatGLM、Qwen 和 Baichuan 等。
- 多模态能力:支持 LLaVA 等多模态图文模型的预训练与微调,如表现出色的 LLaVA-InternLM2-20B 模型。
- 数据管道:设计灵活的数据管道,兼容各种数据格式,无论是开源数据还是自定义数据,都能快速适应。
- 微调算法:提供 QLoRA、LoRA 及全量参数微调等多种微调算法,满足不同需求。
全能应用
- 训练模式:支持增量预训练、指令微调及 Agent 微调,适应多种训练场景。
- 对话模板:预设丰富的开源对话模板,便于与各类模型进行交互。
- 无缝集成:训练后的模型可直接部署于 LMDeploy,或通过 OpenCompass 和 VLMEvalKit 进行大规模评测。
环境准备
创建工作目录
创建本次微调实践的工作目录 /root/autodl-tmp/ft-learn
# 创建微调工作目录
mkdir -p /root/autodl-tmp/ft-learn
# 创建微调数据集存放目录
mkdir -p /root/autodl-tmp/ft-learn/dataset
# 创建微调配置文件存放目录
mkdir -p /root/autodl-tmp/ft-learn/config
安装
-
推荐使用 conda 先构建一个 Python-3.10 的虚拟环境
conda create --name xtuner-env python=3.10 -y conda activate xtuner-env -
通过 pip 安装 XTuner:
pip install -U xtuner亦可集成 DeepSpeed 安装:
pip install -U 'xtuner[deepspeed]' -
从源码安装 XTuner:
git clone https://github.com/InternLM/xtuner.git cd xtuner pip install -e '.[all]'
安装依赖
# 升级pip
python -m pip install --upgrade pip
# 安装python依赖
pip install modelscope==1.9.5
pip install transformers==4.36.2
pip install streamlit==1.2

最低0.47元/天 解锁文章

1697

被折叠的 条评论
为什么被折叠?



