torch.nn.BCEWithLogitsLoss与torch.nn.BCELoss

本文展示了BCEWithLogitsLoss和BCELoss在PyTorch中的使用,通过代码示例说明了BCEWithLogitsLoss等价于sigmoid激活函数加BCELoss,并提供了计算损失的实例。
摘要由CSDN通过智能技术生成

torch.nn.BCEWithLogitsLoss相当于sigmoid+torch.nn.BCELoss。代码示例如下,

import torch
import torch.nn as nn


BCEWithLogitsLoss = nn.BCEWithLogitsLoss()
BCELoss = nn.BCELoss()

x = torch.randn((1,))
y = torch.FloatTensor([1])

Loss_BCEWithLogits = BCEWithLogitsLoss(x, y)
Loss_BCE = BCELoss(torch.sigmoid(x), y)

print("BCEWithLogitsLoss:", Loss_BCEWithLogits)
print("BCELoss:", Loss_BCE)


"""
BCEWithLogitsLoss: tensor(0.2138)
BCELoss: tensor(0.2138)
"""
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chen_znn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值