numpy.hanning()的使用

文章展示了如何利用numpy库中的hanning函数创建一个余弦窗函数,该函数常用于信号处理中的滤波或突出特定数据。提供的代码示例解释了如何调用hanning函数并显示其输出,输出是一个逐渐变化并最终回归到零的向量,这种函数在数据分析和信号处理中具有重要意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用途:

  • 这是numpy库中比较常见的函数,它生成余弦窗函数或者高斯函数,用于过滤或者突出某个物体。
  • 输入参数:M.
    -输出:一行M列的向量

代码示例1:

#numpy.hanning
import numpy as np
import matplotlib.pyplot as plt
window=np.hanning(50)
print('w2:',window)
plt.plot(window)
plt.show()


在这里插入图片描述

输出:

w2: [0.         0.00410499 0.01635257 0.03654162 0.06434065 0.09929319
 0.14082532 0.1882551  0.24080372 0.29760833 0.35773621 0.42020005
 0.48397421 0.54801151 0.61126047 0.67268253 0.73126915 0.78605833
 0.83615045 0.88072298 0.91904405 0.95048443 0.97452787 0.99077958
 0.9989727  0.9989727  0.99077958 0.97452787 0.95048443 0.91904405
 0.88072298 0.83615045 0.78605833 0.73126915 0.67268253 0.61126047
 0.54801151 0.48397421 0.42020005 0.35773621 0.29760833 0.24080372
 0.1882551  0.14082532 0.09929319 0.06434065 0.03654162 0.01635257
 0.00410499 0.    

代码示例2:


import  numpy as np
window_len=50
window = 'hanning'
w1 = getattr(np, window)(window_len)
print('w1:',w1)

输出:

w1: [0.         0.00410499 0.01635257 0.03654162 0.06434065 0.09929319
 0.14082532 0.1882551  0.24080372 0.29760833 0.35773621 0.42020005
 0.48397421 0.54801151 0.61126047 0.67268253 0.73126915 0.78605833
 0.83615045 0.88072298 0.91904405 0.95048443 0.97452787 0.99077958
 0.9989727  0.9989727  0.99077958 0.97452787 0.95048443 0.91904405
 0.88072298 0.83615045 0.78605833 0.73126915 0.67268253 0.61126047
 0.54801151 0.48397421 0.42020005 0.35773621 0.29760833 0.24080372
 0.1882551  0.14082532 0.09929319 0.06434065 0.03654162 0.01635257
 0.00410499 0.        ]

Process finished with exit code 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

椒椒。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值