该问题也是面试中常考的题型,一般有两种解法:
- 一种是正向思维,从入度考虑,类似广度优先搜索;
- 另一种是逆向思维,从出度考虑,类似深度优先搜索
我推荐优先从入度考虑,这个方式比较符合多数人的思维逻辑
一、Leetcode207题:课程表
1.题目描述
你这个学期必须选修 numCourses 门课程,记为 0 到 numCourses - 1 。
在选修某些课程之前需要一些先修课程。 先修课程按数组 prerequisites 给出,其中 prerequisites[i] = [ai, bi] ,表示如果要学习课程 ai 则 必须 先学习课程 bi 。
例如,先修课程对 [0, 1] 表示:想要学习课程 0 ,你需要先完成课程 1 。
请你判断是否可能完成所有课程的学习?如果可以,返回 true ;否则,返回 false 。
示例1:
输入:numCourses = 2, prerequisites = [[1,0]]
输出:true
解释:总共有 2 门课程。学习课程 1 之前,你需要完成课程 0 。这是可能的。
示例2:
输入:numCourses = 2, prerequisites = [[1,0],[0,1]]
输出:false
解释:总共有 2 门课程。学习课程 1 之前,你需要先完成课程 0 ;并且学习课程 0 之前,你还应先完成课程 1 。这是不可能的。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/course-schedule
2.思路分析
- 本题可约化为: 课程安排图是否是 有向无环图(DAG)。即课程间规定了前置条件,但不能构成任何环路,否则课程前置条件将不成立。
- 思路是通过 拓扑排序 判断此课程安排图是否是 有向无环图(DAG) 。 拓扑排序原理: 对 DAG 的顶点进行排序,使得对每一条有向边 (u, v),均有 u(在排序记录中)比 v 先出现。亦可理解为对某点 v 而言,只有当 v 的所有源点均出现了,v 才能出现。
- 通过课程前置条件列表 prerequisites 可以得到课程安排图的 邻接表 adjacency,以降低算法时间复杂度。
算法流程:
1.统计课程安排图中每个节点的入度,生成 入度表 indegrees。
2.借助一个队列 queue,将所有入度为 00 的节点入队。
3.当 queue 非空时,依次将队首节点出队,在课程安排图中删除此节点 pre:
- 并不是真正从邻接表中删除此节点 pre,而是将此节点对应所有邻接节点 cur 的入度 −1,即 indegrees[cur] -= 1。
- 当入度 -1后邻接节点 cur 的入度为 0,说明 cur 所有的前驱节点已经被 “删除”,此时将 cur 入队。
4.在每次 pre 出队时,执行 numCourses--;
- 若整个课程安排图是有向无环图(即可以安排),则所有节点一定都入队并出队过,即完成拓扑排序。换个角度说,若课程安排图中存在环,一定有节点的入度始终不为 0。
- 因此,拓扑排序出队次数等于课程个数,返回 numCourses == 0 判断课程是否可以成功安排。
算法流程示意图如下:
3.解答
class Solution {
//拓扑排序:入度表(广度优先搜索)
public boolean canFinish(int numCourses, int[][] prerequisites) {
//创建邻接表
List<List<Integer>> adjacency = new ArrayList<>();
//初始化numCourses条有向链路
for(int i = 0; i < numCourses; i++){
adjacency.add(new ArrayList<>());
}
//创建入度表
int[] indegrees = new int[numCourses];
//完善节点关系
for(int[] pre : prerequisites){
adjacency.get(pre[1]).add(pre[0]);
//统计入度数量
indegrees[pre[0]]++;
}
//遍历节点,找到入度为0的节点,开始广搜
Queue<Integer> queue = new LinkedList<>();
for(int i = 0; i < numCourses; i++){
if(indegrees[i] == 0){
queue.offer(i);
}
}
while(!queue.isEmpty()){
int cur = queue.poll();
//待安排的课程-1
numCourses--;
for(int next : adjacency.get(cur)){
//删除这个节点相邻的边,同时更新相邻节点的入度值
indegrees[next]--;
//将新出现的入度为0的节点加入队列
if(indegrees[next] == 0){
queue.offer(next);
}
}
}
//如果所以课程都已合理安排,则说明无环
return numCourses == 0;
}
}
时间复杂度 O(N + M): 遍历一个图需要访问所有节点和所有临边,N 和 M 分别为节点数量和临边数量;
空间复杂度 O(N + M): 为建立邻接表所需额外空间,adjacency 长度为 N ,并存储 M 条临边的数据。
二、Leetcode210题:课程表 ||
1.题目描述
现在你总共有 numCourses 门课需要选,记为 0 到 numCourses - 1。给你一个数组 prerequisites ,其中 prerequisites[i] = [ai, bi] ,表示在选修课程 ai 前 必须 先选修 bi 。
例如,想要学习课程 0 ,你需要先完成课程 1 ,我们用一个匹配来表示:[0,1] 。
返回你为了学完所有课程所安排的学习顺序。可能会有多个正确的顺序,你只要返回 任意一种 就可以了。如果不可能完成所有课程,返回 一个空数组 。
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/course-schedule-ii
2.思路分析
这道题和上面那道题思路一致,只是此处要求返回的是具体的排序数组。
只需要在逻辑删除入度为0的节点时,将其加入结果数组即可。
3.解答
class Solution {
//拓扑排序:入度表(广度优先搜索)
public int[] findOrder(int numCourses, int[][] prerequisites) {
//创建邻接表
List<List<Integer>> adjacency = new ArrayList<>();
//初始化numCourses条有向链路
for(int i = 0; i < numCourses; i++){
adjacency.add(new ArrayList<>());
}
//创建入度表
int[] indegrees = new int[numCourses];
//完善节点关系
for(int[] pre : prerequisites){
adjacency.get(pre[1]).add(pre[0]);
//统计入度数量
indegrees[pre[0]]++;
}
//遍历节点,找到入度为0的节点,开始广搜
Queue<Integer> queue = new LinkedList<>();
for(int i = 0; i < numCourses; i++){
if(indegrees[i] == 0){
queue.offer(i);
}
}
//存储顺序
int[] res = new int[numCourses];
int index = 0;
//计算
while(!queue.isEmpty()){
int cur = queue.poll();
//更新顺序数组
res[index++] = cur;
//待安排的课程-1
numCourses--;
for(int next : adjacency.get(cur)){
//删除这个节点相邻的边,同时更新相邻节点的入度值
indegrees[next]--;
//将新出现的入度为0的节点加入队列
if(indegrees[next] == 0){
queue.offer(next);
}
}
}
//如果所以课程都已合理安排,则说明无环
return numCourses == 0 ? res : new int[0];
}
}