Python实战07:麦当劳用户市场调研分析

📮 求内推

👩 个人简介:听障人,96年,计算机专业(本科),从事数据分析工作
🛠 语言与工具:包括但不限于Python、SQL、tableaubi、finebi、powerbi。
💻 期望岗位:数据分析、数据运营、报表开发等(hc偏技术方向)
📍 期望城市:杭州

背景问题

自1955年在美国创立以来,麦当劳已发展成为全球快餐业的标志性品牌,其黄金拱门标志几乎遍布世界各地。随着市场环境的变化和技术的发展,麦当劳不断调整其市场营销策略,以适应不同地区消费者的需求和全球健康饮食趋势的变迁。近年来,数字化转型成为麦当劳战略的核心,包括线上点餐的使用、数字化营销的加大投入、以及顾客体验的优化,这一切都旨在提升品牌竞争力并深化与顾客的情感联系。

本数据集提供了针对麦当劳消费用户的市场调研信息,可以用于深入了解顾客偏好、评估产品与服务质量、优化价格策略、精确定位营销活动以及响应健康饮食趋势,从而帮助麦当劳制定更加精准的市场策略,提升顾客满意度和品牌竞争力。

数据说明

问题描述

顾客口味偏好分析
价格敏感度分析
整体喜好分析
顾客画像分类

数据清洗及预览

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import re

plt.rcParams['axes.unicode_minus'] = False

df  = pd.read_csv(r'D:\pythonbag\Datas\mcdonalds.csv',index_col = 0)

print('-'*50)
display(df.head())
print('数据集大小:\n',df.shape)
print('-'*50)
print('数据集存在重复值个数:\n',df.duplicated().sum())
print('-'*50)
print('数据集存在缺失值个数:\n',df.isna().sum())
print('-'*50)
print('数据集信息:')
print(df.info())

由于我把原始数据集的index设置为索引列,所以才会有22条重复记录,考虑到可能存在一些少数客户爱好口味等一模一样的情况,因此不用进行处理。
接下来查看Like和VisitFrequency的唯一值。

for i in ['Like','VisitFrequency']:
    print(df[i].unique())

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值