(深度学习快速入门)第四章第七节:CNN练习2手势识别

本文介绍了使用Sebastien Marcel Static Hand Posture Database进行手势识别的深度学习项目。首先,详细阐述了数据集的特点和下载,然后描述了网络结构,包括MTB模块。接着,讲解了数据预处理、自定义PyTorch数据集`MyDataset`的实现,以及模型和训练脚本的编写。最后提到了使用tensorboard进行可视化,并选择最佳模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一:Sebastien Marcel Static Hand Posture Database(静态手势数据集)介绍

Sebastien Marcel Static Hand Posture Database提供了6种手势姿势,如下图,分别代表

  • A
  • B
  • C
  • five
  • point
  • V

在这里插入图片描述

图片格式为.ppm

  • PBM 是位图(bitmap),仅有黑与白,没有灰
  • PGM 是灰度图(grayscale)
  • PPM 是通过RGB三种颜色显现的图像(pixmaps)
    在这里插入图片描述
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快乐江湖

创作不易,感谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值