使用昇腾芯片进行多卡训推时使用hccl_tools.py为npu分配ip报错问题解决办法

问题描述

昇腾芯片(910b/310p等)进行多卡训练或者推理时需要先获取并配置每张npuip信息,因此需要执行类似下面问题:

python mindformers/tools/hccl_tools.py --device_num "[0,8)"

执行后报错:
请添加图片描述
注意:有的报错显示Command execute failed!
有的报错显示/bin/sh: hccn_tool: command not found
Failed to call hccn_tool, try to read /etc/hccn.conf instead

问题产生原因

  1. 宿主机无hccn_tool执行命令,可使用下述命令查询(无输出则没有该命令)
whereis hccn_tool

在这里插入图片描述

  1. /etc/hccn.conf文件为空,可使用下述命令查询(无输出则没有该命令)
vi /etc/hccn.conf
  1. 下面指令需要在
### YOLOv8 Multi-GPU Training and Resolving `ChildFailedError` When encountering the error `torch.distributed.elastic.multiprocessing.errors.ChildFailedError` during multi-GPU training with YOLOv8, several factors could contribute to this issue. The following sections provide a comprehensive approach to diagnosing and resolving these errors. #### Verify Compatibility of PyTorch and CUDA Versions One common cause is mismatched versions between PyTorch's cuDNN version and the installed CUDA toolkit on the system[^4]. For instance, if using CUDA 11.6, ensure that all dependencies align correctly: ```bash pip install torch==1.12.1+cu116 torchvision==0.13.1+cu116 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu116 ``` This ensures compatibility by installing specific builds tailored for CUDA 11.6 environments. #### Update Command Syntax According to PyTorch Version For PyTorch versions greater than or equal to 1.9, the command syntax has changed from `torch.distributed.launch` to `torch.distributed.run`. Using outdated commands can lead directly to `ChildFailedError`. Replace any instances of `launch` with `run`, adjusting parameters as necessary: ```python python -m torch.distributed.run \ --nproc_per_node=NUM_GPUS_YOU_HAVE \ train.py \ --img 640 640 \ --epochs 3 \ --cfg cfg/training/yolov7-tiny.yaml \ --weights '' \ --name yolov7 \ --hyp data/hyp.scratch.tiny.yaml ``` Ensure parameter names match those expected by the script; some scripts may require hyphens instead of underscores (e.g., `local-rank`)[^3]. #### Clear Cache Files Corrupted cache files might interfere with proper execution flow. Specifically within datasets used for training, clearing label caches can prevent unexpected behavior: ```bash rm path/to/dataset/*.cache ``` Afterwards, reinitialize the dataset processing step which will regenerate required metadata without potential corruption issues present before. --- --related questions-- 1. How does one verify the current installation details of PyTorch including its associated CUDA version? 2. What are best practices when transitioning codebases utilizing older distributed utilities like `torch.distributed.launch` to newer ones such as `torch.distributed.run`? 3. In what scenarios would it be beneficial to adjust batch sizes while performing multi-GPU operations in deep learning frameworks similar to PyTorch? 4. Can you explain how environment variables influence GPU resource allocation during parallel computing tasks involving multiple GPUs?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值