【ESP32】ESP-Face 人脸检测识别

1. ESP-Face

这是一个提供人脸检测和人脸识别功能以及神经网络操作的组件。它可以用作某些项目的组件,因为它不支持任何外围接口。默认情况下,它与项目级存储库ESP-WHO一起工作。

1.1 人脸检测

使用MTMN模型进行人脸检测,输入为一幅 RGB 24-bits图像,如果图像中有人脸坐标,则输出为人脸坐标。

  • 左上
  • 右下
  • landmarks:人脸关键点坐标

更多关于人检测的内容,参考博文:【ESP32-Face】ESP32人脸检测MTMN 模型以及face_detect()函数详解

1.2 人脸识别

若人脸检测过程中检测到有人脸,则进行人脸识别过程。

过程:预先注册过人脸

输入:原始图像和面部检测的处理结果

输出:表示面部的 512-d 矢量信息。然后与注册的人脸向量进行比较,判断是否是已经注册过的人脸。

更多关于人脸检测的内容,参考博文:【ESP32】ESP32-Face人脸识别过程概述】

1.3 深度学习库

该库包含基本矩阵运算、基本深度神经网络运算、网络结构和系数。

更多关于esp深度学习库的内容,参考博文:【esp-Deep learning library】

### ESP32-S3 上的人脸检测实现 #### 1. 开发环境准备 为了在ESP32-S3上实现人脸检测,需先配置好开发环境。推荐使用MicroPython作为编程语言,因为它简化了许多底层操作并提供了易于使用的库函数。 安装最新版本的MicroPython固件到ESP32-S3设备中[^1]。这一步骤通常通过esptool.py工具完成,在命令行界面执行如下指令: ```bash esptool.py --chip esp32s3 --port /dev/ttyUSB0 erase_flash esptool.py --chip esp32s3 --port /dev/ttyUSB0 write_flash -z 0x0 path_to_firmware.bin ``` 其中`path_to_firmware.bin`应替换为实际下载得到的MicroPython固件文件路径。 #### 2. 配置硬件连接 确保所选用的ESP32-S3模块或开发板已经正确接线至摄像头模组。对于某些特定型号如ESP32-CAM,官方文档给出了详细的引脚定义说明[^2]。如果采用的是其他类型的相机,则需要查阅对应的数据手册来确认具体的连线方式。 #### 3. 编写程序代码 基于上述准备工作完成后,可以编写一段简单的测试代码来进行初步验证。下面给出了一段利用`face_recognition`类进行实时频流处理的例子: ```python from machine import Pin, I2C import time from face_recognition import FaceRecognition i2c = I2C(scl=Pin(22), sda=Pin(21)) fr = FaceRecognition(i2c) while True: fr.update() faces = fr.get_faces() if len(faces) > 0: print('Detected {} face(s)!'.format(len(faces))) time.sleep_ms(500) ``` 此段代码创建了一个I2C对象实例化了`FaceRecognition`类,并在一个无限循环里不断更新图像帧数据,当发现有人脸存在时便打印消息提示。 #### 4. 测试与调试 将编写的Python脚本上传至ESP32-S3运行起来之后,可以通过串口监器观察输出日志了解当前状态;也可以按照参考资料中的指导建立Wi-Fi热点并通过Web页面查看摄像头上捕捉的画面效果[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

积跬步、至千里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值