Keras进行人民币面额识别(三)

本文介绍如何使用Keras进行人民币面额识别,通过处理测试集数据,利用Keras内置的图片生成器,将预测结果转化为相应面值。代码解释详细,包括输出结果的转换方法和进度打印。在两千个图片的验证集中,实现100%的正确率。
摘要由CSDN通过智能技术生成


本篇是对测试集进行测试和相应结果的输出

比赛链接

https://www.tinymind.cn/competitions/47?rron=banner

输入信息

也就是我们的测试集
因为处理测试集的时候,我直接用的keras内置的图片生成器,所以数据需要手动处理一下。
将所有图片放入一个文件夹中,然后在旁边创建两个空文件夹就行,注意都用英文字母。
如下:
在这里插入图片描述

需要输出的信息

在这里插入图片描述

代码源码

from keras.preprocessing.image import ImageDataGenerator
from keras.models import load_model

testgen_dir = './val_data/'
#测试集目录
fin_list = [0.1,0.2,0.5,1,2,5,10,50,100]
#相应标签对应的人民币面值

def get_result(directory):
    file = open('fin_data.csv','w')
    file.write('name, label\n')
    end = False # 相当于一个开关,当Ture的时候程序结束
    i = 0   #记录测试的图片数目

    #创建图片生成器
    test_datagen = ImageDataGenerator(
        rescale=1. / 255 #归一化
    )
    test_generator = test_datagen.flow_from_directory(
        directory=directory, #地址
        
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值