2019.4.4聚合函数

在这里插入图片描述

count() 用于计算数量

在这里插入图片描述
count(*) 查询某列共多少个值
在这里插入图片描述

为了列名方便观看,一般要取别名。

select count(*) count from student where mingzu='汉族';

在这里插入图片描述

在这里插入图片描述


sum() 用于计算某列的和

在这里插入图片描述

select sum(列名) from user;

同样的 sum也可以取别名
在这里插入图片描述

avg() 计算某列的平均值

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

max()、min() 求某列的最大、最小值。

在这里插入图片描述

综合:
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

group by

在这里插入图片描述

在这里插入图片描述

实例:
在这里插入图片描述
排序的时候 排序的列名应该是已经查询出来的别名。

在这里插入图片描述
若要加条件,这个where应该加在表名的后面。

在分组,排序的时候,先去掉多余的数据,留下有用的,再进行分组和排序。

Having

在这里插入图片描述

having尽量少用 因为它要遍历整张表的所有数据,在整张表全部进行运算,影响效率。

强烈建议多使用子查询
having的用法
https://www.cnblogs.com/lao-tang/p/6398577.html

查询语句的执行顺序:

在这里插入图片描述

什么是SQL优化?

sql优化指的是在运行时 先筛选掉大的 再在小的里面进行二次筛选 然后分组 ,排序。要按照这个顺序去写sql代码

关联查询

在这里插入图片描述

示例:

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

笛卡尔积

在这里插入图片描述

示例:
在这里插入图片描述

上面的两个表,若不写条件 where 就会产生下面结果:

在这里插入图片描述

等值连接

在这里插入图片描述

内连接

在这里插入图片描述

外连接(重点 语法要背)

在这里插入图片描述

在这里插入图片描述
把左边的表作为主表,右边的表的数据 把满足条件的结果拼接到后边,主表的所有数据都要显示
意思是虽然左边的 用户D 没有id数值,但是外连接还是会把D显示出来,只是没有数据而已,而不是直接把D取消资格。

图上的蓝色线就是驱动条件

右连接:显示右边的全部数据,即使对应的左边的值为空,也一样显示
在这里插入图片描述

左连接:显示左边的全部条件,即使对应的右边的值为空,也一样显示
From table left outer join table

在这里插入图片描述

另一种写法
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

分页查询

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
GCN(Graph Convolutional Network)是一种基于图结构的深度学习模型,可以用于图像分类、社交网络分析等任务。在这篇文章中,我们将对GCN源码进行分析。 首先,我们需要了解GCN的基本原理。GCN是通过对图中的节点进行卷积操作来提取节点特征的。具体地,GCN的卷积操作可以定义为: $H^{(l+1)} = \sigma(\hat{D}^{-\frac{1}{2}}\hat{A}\hat{D}^{-\frac{1}{2}}H^{(l)}W^{(l)})$ 其中,$H^{(l)}$表示第$l$层节点特征矩阵,$W^{(l)}$表示第$l$层的权重矩阵,$\hat{A}$表示邻接矩阵加上自环的矩阵,$\hat{D}$表示度矩阵加上自环的矩阵,$\sigma$表示激活函数。 接下来,我们将对GCN源码进行分析。GCN的源码在GitHub上可以找到(https://github.com/tkipf/gcn)。我们将以GCN的Cora数据集为例进行分析。 首先,我们需要加载Cora数据集。GCN的数据集格式是一个包含特征矩阵、邻接矩阵和标签的对象。在GCN的源码中,我们可以看到以下代码: features = sp.identity(features.shape[0]) # featureless if not sparse: features = np.array(features.todense()) adj = adj + sp.eye(adj.shape[0]) degree = np.array(adj.sum(1)) d_inv_sqrt = np.power(degree, -0.5).flatten() d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0. d_mat_inv_sqrt = sp.diags(d_inv_sqrt) adj = d_mat_inv_sqrt.dot(adj).dot(d_mat_inv_sqrt).tocoo() features = preprocess_features(features) 在这段代码中,我们首先将特征矩阵转化为稀疏矩阵的形式,然后加上自环,计算度矩阵和度矩阵的逆平方根,最后对邻接矩阵进行归一化处理。这些处理都是为了满足GCN的卷积操作。 接下来,我们来看GCN的具体实现。在GCN的源码中,我们可以看到以下代码: class GraphConvolution(nn.Module): def __init__(self, in_features, out_features, bias=True): super(GraphConvolution, self).__init__() self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.FloatTensor(in_features, out_features)) if bias: self.bias = nn.Parameter(torch.FloatTensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): stdv = 1. / math.sqrt(self.weight.size(1)) self.weight.data.uniform_(-stdv, stdv) if self.bias is not None: self.bias.data.uniform_(-stdv, stdv) def forward(self, input, adj): support = torch.mm(input, self.weight) output = torch.spmm(adj, support) if self.bias is not None: return output + self.bias else: return output 在这段代码中,我们定义了GraphConvolution类,它是GCN的基本单元。在初始化函数中,我们定义了权重矩阵和偏置,然后通过reset_parameters()函数对它们进行初始化。在正向传播函数中,我们首先对输入特征矩阵和权重矩阵进行矩阵乘法,然后对结果进行邻接矩阵的稀疏矩阵乘法,最后加上偏置(如果有)并返回输出。 最后,我们需要定义完整的GCN模型。在GCN的源码中,我们可以看到以下代码: class GCN(nn.Module): def __init__(self, nfeat, nhid, nclass, dropout): super(GCN, self).__init__() self.gc1 = GraphConvolution(nfeat, nhid) self.gc2 = GraphConvolution(nhid, nclass) self.dropout = dropout def forward(self, x, adj): x = F.relu(self.gc1(x, adj)) x = F.dropout(x, self.dropout, training=self.training) x = self.gc2(x, adj) return F.log_softmax(x, dim=1) 在这段代码中,我们定义了GCN类,它包含两个GraphConvolution层和一个dropout层。在正向传播函数中,我们首先对输入特征矩阵和邻接矩阵进行第一层卷积操作,然后对结果进行ReLU激活和dropout操作,最后再进行第二层卷积操作并返回输出。注意,GCN的输出需要进行log_softmax操作以得到预测结果。 以上就是对GCN源码的分析。希望这篇文章能够对理解GCN有所帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值