【归档】关于奇数的平方对8取余(取模)得1的证明

Note: 旧的wordpress博客弃用,于是将以前的笔记搬运回来。


关于奇数的平方对8取余(取模)得1的证明
证明:
【注:%表示取余(也叫取模)】
对于 ∀ n ∈ R \forall n \in \mathbb{R} nR满足 n % 2 = 1 n \% 2 = 1 n%2=1,总 ∃ k ∈ R \exists k \in \mathbb{R} kR使得 n = 2 k + 1 n = 2k + 1 n=2k+1
所以有:
n 2 = ( 2 k + 1 ) 2 = 4 k 2 + 4 k + 1 = 4 k ( k + 1 ) + 1 n^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 4k(k + 1) + 1 n2=(2k+1)2=4k2+4k+1=4k(k+1)+1.
其中, k ( k + 1 ) k(k + 1) k(k+1)中k与k + 1二者必然存在一个偶数,因此 k ( k + 1 ) k(k+1) k(k+1)能被2整除,即 k ( k + 1 ) % 2 = 0 k(k + 1) \% 2 = 0 k(k+1)%2=0。所以有, 4 k ( k + 1 ) % 8 = 0 4k(k+1) \% 8 = 0 4k(k+1)%8=0,因此 ( 4 k ( k + 1 ) + 1 ) % 8 = 1 (4k(k+1) + 1) \% 8 = 1 (4k(k+1)+1)%8=1,也就是一个奇数的平方对8取余得1。
证毕。

相关问题:
关于奇数的四次方对16取余(取模)得1的证明
关于奇数的 2 t 2^t 2t幂被 2 ( t + 1 ) 2^{(t + 1)} 2(t+1)取余得1的证明
关于对a^b % 2^n = b^a % 2^n,当a为奇数时,在范围[1, 2^n]有且仅有一个b使等式成立的证明

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值