注意:本文引用自专业人工智能社区Venus AI
更多AI知识请参考原站 ([www.aideeplearning.cn])
高斯混合模型(GMM)是统计模型中的一颗璀璨之星,它为数据提供了一种复杂而又强大的表示方法。在机器学习的许多领域,从模式识别到图像处理,GMM都被广泛地采用和研究。它背后的核心思想是使用多个高斯分布的组合来拟合数据,这种方法的优越性在于其对数据的弹性拟合能力和生成性质。
1. 算法解读
GMM 是一种使用高斯分布混合体来表示数据集的方法。简单来说,每一个聚类都可以用一个高斯分布来描述,而数据集则可以被认为是这些高斯分布的混合。GMM的目标是:找出最能代表数据的高斯分布的参数(均值、协方差和混合系数)。
EM(期望最大化)算法通常用于优化GMM的参数。EM算法迭代地执行以下两个步骤:
期望步骤 (E-step):给定当前的模型参数,计算数据点属于每个聚类的概率。
最大化步骤 (M-step):更新模型参数以最大化观测数据的似然。
具体的数学基础知识请详见数学专栏。
2. 步骤和细节
初始化阶段:
选择高斯混合模型(GMM)中的高斯分布数量。
初始化每个高斯分布的参数,包括均值、协方差和混合系数。
E-step (期望步骤):
对每个数据点,根据当前参数估计,计算其属于各个高斯分布的后验概率。
M-step (最大化步骤):
更新均值: 根据后验概率,重新计算每个高斯分布的均值。
更新协方差