聚类算法之高斯混合模型聚类 (Gaussian Mixture Model, GMM)

注意:本文引用自专业人工智能社区Venus AI

更多AI知识请参考原站 ([www.aideeplearning.cn])

高斯混合模型(GMM)是统计模型中的一颗璀璨之星,它为数据提供了一种复杂而又强大的表示方法。在机器学习的许多领域,从模式识别到图像处理,GMM都被广泛地采用和研究。它背后的核心思想是使用多个高斯分布的组合来拟合数据,这种方法的优越性在于其对数据的弹性拟合能力和生成性质。

Fig2 (1)

1. 算法解读

GMM 是一种使用高斯分布混合体来表示数据集的方法。简单来说,每一个聚类都可以用一个高斯分布来描述,而数据集则可以被认为是这些高斯分布的混合。GMM的目标是:找出最能代表数据的高斯分布的参数(均值、协方差和混合系数)。

EM(期望最大化)算法通常用于优化GMM的参数。EM算法迭代地执行以下两个步骤:

期望步骤 (E-step):给定当前的模型参数,计算数据点属于每个聚类的概率。

最大化步骤 (M-step):更新模型参数以最大化观测数据的似然。

具体的数学基础知识请详见数学专栏。

2. 步骤和细节

初始化阶段:

选择高斯混合模型(GMM)中的高斯分布数量。

初始化每个高斯分布的参数,包括均值、协方差和混合系数。

E-step (期望步骤):

对每个数据点,根据当前参数估计,计算其属于各个高斯分布的后验概率。

M-step (最大化步骤):

更新均值: 根据后验概率,重新计算每个高斯分布的均值。

更新协方差

### 高斯混合模型 (Gaussian Mixture Model, GMM) 的概念 高斯混合模型是一种基于概率的无监督学习方法,它假设数据是从多个正态分布中生成的。具体来说,GMM 可以被看作由 \(K\) 个单高斯模型组合而成的模型[^3]。这些子模型被称为隐变量(Hidden Variable),因为实际的数据并不显式地属于某个特定的高斯分布。 #### 数学表示 GMM 的数学形式可以用以下公式描述: \[ p(x|\theta) = \sum_{k=1}^{K} \pi_k \cdot N(x | \mu_k, \Sigma_k) \] 其中: - \(N(x | \mu_k, \Sigma_k)\) 表示第 \(k\) 个高斯分量的概率密度函数; - \(\pi_k\) 是权重系数,满足 \(\sum_{k=1}^K \pi_k = 1\) 和 \(\pi_k > 0\); - \(\mu_k\) 和 \(\Sigma_k\) 分别代表第 \(k\) 个高斯分量的均值向量和协方差矩阵。 这种结构使得 GMM 能够灵活建模复杂的数据分布。 --- ### 应用场景 GMM 广泛应用于各种领域,以下是几个典型的应用案例: #### 数据聚类 在无标签的情况下,GMM 可以用来对数据进行软聚类。相比于传统的硬划分聚类算法(如 K-Means),GMM 提供了一种更柔性的解决方案,允许样本部分隶属于多个簇[^1]。 #### 图像分割 图像中的像素通常具有复杂的分布特性,而 GMM 可以很好地捕捉这些特征并将其划分为不同区域。例如,在医学影像分析中,GMM 常用于脑部 MRI 扫描的灰质/白质分离任务。 #### 时间序列建模 当与隐马尔科夫模型(HMM)结合时,GMM 成为了强大的工具来处理时间序列数据。这种方法广泛应用于语音识别领域,作为声学模型的核心组成部分之一[^2]。 --- ### 实现方式 Python 中最常用的库 `scikit-learn` 提供了简单易用的接口来训练 GMM 模型。下面是一个简单的代码示例展示如何利用该库完成基本的任务。 ```python from sklearn.mixture import GaussianMixture import numpy as np # 构造模拟数据集 data = np.random.randn(500, 2) # 初始化 GMM 模型对象 gmm_model = GaussianMixture(n_components=3, covariance_type='full', random_state=42) # 训练模型 gmm_model.fit(data) # 输出各组分参数估计结果 print("Means:\n", gmm_model.means_) print("Covariances:\n", gmm_model.covariances_) # 对新样本预测其所属类别及其隶属度 new_sample = [[0.5, 0.5]] prediction = gmm_model.predict(new_sample) probabilities = gmm_model.predict_proba(new_sample) print(f"Predicted cluster: {prediction}") print(f"Cluster membership probabilities: {probabilities}") ``` 上述脚本展示了如何定义、拟合以及评估一个三成分的 GMM 模型,并进一步解释了它的内部工作原理。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值