SPSS 建模数据分析实战之 银行信用评分

本文介绍使用SPSSModeler进行数据特征提取、清洗及信用评分模型的构建过程。涉及连续变量分箱、logistics回归等分析方法,通过模型方程计算回归系数,并转化为信用评分。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

获取数据

数据可以是自己爬取,也可以是其它方式获取,不多说。

数据的特征提取和数据清洗

在这里插入图片描述
在SPSS Modeler 中导入数据并利用特征模型对原数据进行特征分析。
在这里插入图片描述
可以得出重要的字段和不重要的字段。

在这里插入图片描述
对136个重要字段进行数据审核,可以看出字段有无缺失值、异常值,。。

~~

然后对数据根据个人需求进行数据清洗。


*

分析方法:连续变量分箱方法;logistics回归;评分卡方法。

*对字段进行分享计算WOE值
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

建立模型

在这里插入图片描述

导出模型方程为TXT文本

在这里插入图片描述
**

导出回归系数**

在这里插入图片描述
根据之前导出的方程模型进行计算

将回归系数转化成信用评分

在这里插入图片描述
根据上一步得出的回归系数计算各分箱评分
在这里插入图片描述

信用模型检验

在这里插入图片描述
在这里插入图片描述
导出八万条客户的评分数据。
在这里插入图片描述
可以看出K-S值最大的是267分,说明如果267分以上放贷,以下不放,可以有拒绝49.592%的坏顾客,同时也会拒绝31.247%的好客户。。

模型验证示例

在这里插入图片描述
到此就结束,人懒,细节的地方就不写了。因为纯属是为了学习,所以模型最后的结果不是很让人满意,但是大致上了解了SPSS Modeler 的操作。。

评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值