pytorch
文章平均质量分 54
Happy丶lazy
这个作者很懒,什么都没留下…
展开
-
pytorch_图片分类_猫狗猴
图片分类作为cv基础,可以当作基础案例进行练习,这个是我自己做的一个猫狗猴的一个多分类,作为初学者可以试试,玩一下import cv2import warningsimport torchimport torchvisionimport torchvision.transforms as transformsimport osimport randomimport numpy as npwarnings.filterwarnings("ignore")def transform_img(原创 2021-09-02 16:22:22 · 154 阅读 · 0 评论 -
LAC研究
以下为LAC的gitee的地址,感兴趣的同学可以研究一下https://gitee.com/mirrors/LAC?utm_source=alading&utm_campaign=repopython 下载方式pip install lac -i https://mirror.baidu.com/pypi/simplefrom LAC import LAC# 装载分词模型lac = LAC(mode='seg')# 单个样本输入,输入为Unicode编码的字符串text = u"原创 2021-08-05 15:42:38 · 975 阅读 · 1 评论 -
seq2sqe与attenton实现聊天机器人
import pandas as pdimport jiebafrom torch.utils import dataimport warningsimport torch.optim as optimimport torchimport torch.nn as nnimport torch.nn.functional as Fimport numpy as npimport randomimport mathimport timeSEED=1222random.seed(SEED原创 2021-05-22 00:34:37 · 234 阅读 · 0 评论 -
pytorch 基于sqs2sqs的中文聊天机器人
由于数据量小,以及我目前无法处理引入“unk”值导致准确率较高的情况,所以还需要进行优化,目前先用这个代码,等我优化好后重新上传,主要分为三步,第一数据的预处理,第二模型的构建,第三测试集处理第一步分为:构建数据,需要构建enc_input,dec_output, dec_input结巴分类以及去掉停用词给enc_input输入值添加一个结束状态,给dec输入状态添加一个开始状态,dec输出状态结束状态将文字转化为数字将数据转化为pytorch专用数据类型,方便批量化处理第二步简单分为:原创 2021-05-02 11:37:45 · 1094 阅读 · 3 评论 -
pytorch_LSTM预测股票行情
7.8 用LSTM预测股票行情7.8.1 导入数据# Tushare是一个免费、开源的python财经数据接口包。主要实现对股票等金融数据从数据采集、清洗加工 到 数据存储的过程import tushare as ts cons = ts.get_apis()#获取沪深指数(000300)的信息,包括交易日期(datetime)、开盘价(open)、收盘价(close),#最高价(high)、最低价(low)、成交量(vol)、成交金额(amount)、涨跌幅(p_change)df =原创 2021-04-29 22:30:39 · 6604 阅读 · 25 评论 -
pytorch RNN原理实现词性判别以及预测下一个词
卷积神经网络利用卷积核的方式来共享参数,使得参数量大大降低的同时还可以利用空间信息,但是对有先后顺序有关的数据就没多大优势当改变位置信息后还是原来的数据,不会有变换,就比如一句话,我喜欢你,你喜欢我,虽然一样多的词的,但是表达意思就是不一样,所以产生RNN时间序列是指将同一统计指标的数值按其发生的时间先后顺序排列而成的数列。时间序列分析的主要目的是根据已有的历史数据对未来进行预测。在时间序列问题上,观察值具有时间先后的特征,历史数据可以影响未来数据的表达,因此需要网络具有记忆能力最开始有自回原创 2021-04-28 23:17:46 · 2032 阅读 · 1 评论 -
pytorch_CNN实现文本情感分类
前面一章已经讲了cnn如何做图像识别,相对应的cnn也可以做文本识别,中心思想不变,卷积层以及池化层等不变,但是数据的输入就需要进行对应的调整不熟悉cnn的同学可以看看上篇文章https://blog.csdn.net/qq_39309652/article/details/115978825?spm=1001.2014.3001.5501这里对cnn的框架不再描述,我们主要看看文本数据如何转化为模型所需要的数据我们只需要将数据构建为(N,C,H,W),其中N为批量数据,C为信号的通道,H为宽,W为原创 2021-04-24 22:06:30 · 2194 阅读 · 0 评论 -
CNN_原理以及pytorch多分类实践
若需要数据以及源代码加群753035545当我们进行这样处理是会产生非常多的参数,我我们可以通过以下详细过程进行分析,如何利用最少的参数等到相同的结果这只是一个分类情况,就用了16个参数,之后看最后的结果使用了16*9个参数才能计算完成,而且这只是一层,我们发现最后的结果一般只与四个参数有关,我们可不可将这四个参数提取出来最后通过一个卷积层将数据进行转换在上图中,输入和卷积核都是张量,卷积运算就是卷积分别乘以输入张量中的每个元素,然后输出一个代表每个输入信息的张量,其中卷积核又称为权重原创 2021-04-21 21:07:33 · 2850 阅读 · 2 评论 -
pytorch入门——线性回归
单纯的数据分析找工作可以,但是想要进阶一定要找一个方向,在之前的时候选择了推荐系统,但是在新公司对NLP更侧重,所以决定先学深度学习,这就面临选择框架,之前了解到Tensorflow,但是构建复杂,所以选择了Pytorch,先简单的做出这样的例子,有好多细节,需要慢慢理解。构造一组输入数据X和其对应的标签yimport numpy as npx_values = [i for i in range(11)]x_train = np.array(x_values, dtype=np.float32)原创 2020-08-03 10:36:53 · 406 阅读 · 3 评论